Theory by Chapter

Chapter P

Absolute Value: The absolute value of a real number *a* is defined by

$$|a| = \begin{cases} a & \text{if } a \ge 0\\ -a & \text{if } a < 0 \end{cases}$$

Note: You can think of |a| as the distance of the point a from the origin on the number line.

*n*th **Root:** (This definition has two parts.)

- If *n* is an even positive integer and $b \ge 0$, then the <u>principal</u> n^{th} root of *b*, $\sqrt[n]{b}$, is the nonnegative real number, *a*, such that $a^n = b$; and
- If *n* is an odd positive integer, then the n^{th} root of *b*, $\sqrt[n]{b}$, is the real number, *a*, such that $a^n = b$.

Note: When *n* is an even, the <u>negative</u> n^{th} root of *b* is written $-\sqrt[n]{b}$.

Polynomial in One Variable: The standard form of a polynomial of degree *n* in the variable *x* is

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where $a_n \neq 0$ and n is a nonnegative integer.

Rational Expression: A rational expression is an expression of the form $\frac{P}{Q}$ where P and Q are polynomials and $Q \neq 0$.

Complex Number: A complex number is a number of the form a + bi where a and b are real numbers and $i = \sqrt{-1}$.

Chapter 1

Quadratic Equation: A quadratic equation in the variable x is an equation that can be written in the form $ax^2 + bx + c = 0$ where a, b, and c are real numbers and $a \neq 0$.

Zero Product Principle: If A and B are algebraic expressions such that AB = 0, then A = 0 or B = 0.

Quadratic Formula: If $ax^2 + bx + c = 0$, $a \neq 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. Proof: $ax^2 + bx + c = 0$ $ax^2 + bx = -c$ $x^2 + \frac{b}{a}x = -\frac{c}{a}$ $x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 = -\frac{c}{a} + \left(\frac{b}{2a}\right)^2$ $\left(x + \frac{b}{2a}\right)^2 = -\frac{c}{a} + \frac{b^2}{4a^2}$ $\left(x + \frac{b}{2a}\right)^2 = -\frac{4ac + b^2}{4a^2}$ $x + \frac{b}{2a} = \pm \sqrt{\frac{-4ac + b^2}{4a^2}}$ $x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Direct Variation: For variables x and y, y varies directly as x if and only if y = kx where k is a constant.

Inverse Variation: For variables x and y, y varies inversely as x if and only if $y = \frac{k}{x}$ where k is a constant.

Chapter 2

Distance Formula: The distance between the points (x_1, y_1) and (x_2, y_2) is

distance =
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Function: A function is a set of ordered pairs in which no two ordered pairs have the same first coordinate and different second coordinates.

Note: A function is a relation that pairs each element in the domain with a distinct element in the range.

One-to-One Function: A function, f, is a one-to-one function if and only if f(a) = f(b) implies a = b.

Linear Function: A linear function of x is a function that can be represented by an equation of the form f(x) = ax + b where a and b are real numbers and $a \neq 0$.

Slope: The slope *m* of the line passing through the points (x_1, y_1) and (x_2, y_2) with $x_1 \neq x_2$ is given by $m = \frac{y_2 - y_1}{x_2 - x_1}$

Quadratic Function: A quadratic function of x is a function that can be represented by an equation of the form $f(x) = ax^2 + bx + c$ where a, b, and c are real numbers and $a \neq 0$.

Chapter 3

Remainder Theorem: If a polynomial P(x) is divided by x - c, the remainder is P(c).

Proof: The division of a polynomial P(x) by x - c results in a quotient Q(x) and a constant remainder r such that $P(x) = (x - c) \cdot Q(x) + r$ Since the identity holds for all real values of x, it must hold when x = c. Consequently, $P(c) = (c - c) \cdot Q(c) + r$ $P(c) = 0 \cdot Q(c) + r$ P(c) = r

Factor Theorem: A polynomial P(x) has a factor x - c if and only if P(c) = 0.

Proof: (Part 1: if P(x) has a factor x - c then P(c) = 0.) Let x - c be a factor of P(x). By the definition of factor, $P(x) = (x - c) \cdot Q(x)$ Since the identity holds for all real values of x, it must hold for x = c. Consequently, $P(c) = (c - c) \cdot Q(c)$ $P(c) = 0 \cdot Q(c)$ P(c) = 0(Part 2: if P(c) = 0 then P(x) has a factor x - c.) Let *c* be a constant such that P(c) = 0. By the Remainder Theorem, $P(x) = (x - c) \cdot Q(x) + P(c)$ But P(c) = 0, so $P(x) = (x - c) \cdot Q(x) + 0$ $P(x) = (x - c) \cdot Q(x)$ Thus, by definition of factor, x - c is a factor of P(x).

Chapter 3 continued

Intermediate Value Theorem: If *P* is a polynomial function such that $P(a) \neq P(b)$ for a < b, then *P* takes on every value between P(a) and P(b) in the interval [a, b].

Rational Zero Theorem: If $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ has integer coefficients with $a_n \neq 0$ and $\frac{p}{q}$ is a rational zero in simplest form of P, then

- 1. p is a factor of the constant term a_0 , and
- 2. *q* is a factor of the leading coefficient a_n .

Fundamental Theorem of Algebra: If *P* is polynomial of degree $n \ge 1$ with complex coefficients, then *P* has at least one zero among the complex numbers.

Linear Factor Theorem: If *P* is a polynomial such that $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ with $n \ge 1$ and $a_n \ne 0$, then *P* is factorable into exactly *n* linear factors

$$P(x) = a_n(x - c_1)(x - c_2) \cdots (x - c_n)$$

where $c_1, c_2, ..., c_n$ are complex numbers.

MA103 College Algebra Theory

Chapter 4

Inverse Function: If the ordered pairs of a function g are the ordered pairs of a function f with the order of the coordinates reversed, then g is the *inverse function* of f.

Exponential Function: The *exponential function* with base *b* is defined by

$$f(x) = b^x$$

where b > 0, $b \neq 1$, and x is a real number.

Logarithmic Function: If x > 0 and b is a positive constant ($b \neq 1$), then

 $y = \log_b x$ if and only if $b^y = x$.

4.4 Properties of Logarithms (not on exam)

1.	Product property	$\log_b(MN) = \log_b M + \log_b N$
2.	Quotient property	$\log_b \frac{M}{N} = \log_b M - \log_b N$
3.	Power property	$\log_b(M^p) = p \log_b M$

Change of Base Formula: If x, a, and b are positive real numbers with $a \neq 1$ and $b \neq 1$, then

$$\log_b x = \frac{\log_a x}{\log_a b}$$