- 1. Prove $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$.
- 2. Prove that for all $x, y \in \mathbb{Z}$, x and y are odd iff xy is odd.
- 3. Let f be differentiable and f'(x) < 0 for all x. Prove that f is decreasing. (Don't forget the Mean Value Theorem.)
- 4. Prove that there is no largest integer.
- 5. Prove that for all $x \in \mathbb{Z}^>$ (aka non-negative integers), there exists $q, r \in \mathbb{Z}$ such that x = 3q + r where $0 \le r < 3$.
- 6. Prove that the square of any integer is of the form 3k or 3k + 1 (aka prove that if $x \in \mathbb{Z}$, then there exists $k \in \mathbb{Z}$ such that $x^2 = 3k$ or $x^2 = 3k + 1$). (Use the previous result.)
- 7. Prove that if m|a and n|b, then mn|ab.
- 8. Prove that if a + b > 100, then either a > 50 or b > 50.

9. Prove
$$\sum_{i=1}^{n} (2i-1) = n^2$$
.

10. Prove that if $x \in \mathbb{Z}$, then $x^2 + x$ is even.

3) recall MUT: Let f be cont on [a,b] + diff on (a,b)then $\exists c \in (a,b) \ni f'(c) = \frac{f(b) - f(a)}{b - a}$

by NLVT
$$\exists z \in (x,y) \Rightarrow f'(z) = f(y) - f(x)$$

(since fieldigg => fieldings for cont).
Since f'(x) <0 $\forall x \Rightarrow f'(z) = f(y) - f(x) < 0$
 $\forall y - x < y = y - x > 0$, from $f(y) - f(x) < 0$
 $\Rightarrow f(y) < f(x)$. is decreasing

4) Prove that there is no larget integr

$$SIKEI = K \times N \ \forall n \in H$$
 (Catradiction)
Consider $k+1$, since $k \in H$, $k+1 \in H$
and since $k+1 > k \Rightarrow k \neq n \ \forall n \in H$
 $\therefore \ Z \ a \ larget integr
5) Let $x \in Z'$, prove $\exists qr \in H \Rightarrow x = 3q + r, o \leq r \in 3$
 $k=1$ let $q=0, r=1$ (Induction)
 $true x = 3q + r$
 $S \ \exists q_1 r \in H \Rightarrow x = n = 3q + r \ (w| o \leq r \in 3)$
Consider $x = n + 1$
 $n+1 = \$(3q + r) + 1$
 $q r=0$ then set $q'=q$ and $r'=1$ (coses)
and $n+1 = 3q' + r'$
 $ig r=1$ then set $q'=q$ and $r'=2$
and $n+1 = 3q' + r'$
 $ig r=2$ then set $q'=q+1$ and $r'=0$
and $n+1 = 3q' + r'$
 $\therefore \exists q_1 r \in H \Rightarrow$
 $x = 3q + r \ w]$
 $c = 3q + r \ w]$$

6) quien for any
$$x \in \mathbb{Z}^{2}$$
 $\exists q_{1}r \in \mathbb{Z}^{2} \Rightarrow x = 3q_{1}rr$
show that for any $n \in \mathbb{Z}$ $n^{2} = 3k$ $a \in n^{2} = 3k+1$
for some $k \in \mathbb{Z}^{2}$
Since $n \in \mathbb{Z}^{2} \Rightarrow n^{2} \in \mathbb{Z}^{2}$ if $n \neq 0$ (cases)
 $if = 0$ $f = n^{2} \in \mathbb{Z}^{2}$ and $\exists q_{1}r \in \mathbb{Z}^{2}$, $o \in r \leq \mathbb{Z}^{2}$
 $if = 0$ $f = 3q + r$
 $if = 0$ $f = 3q + r^{2}$
 $if = 0$ $f = 3q^{2} + 6qr + r^{2}$
 $if = 0$ $f = 3q^{2} + 6qr + r^{2}$
 $if = 0$ $f = n^{2} = 9q^{2} + 6qr + r^{2}$
 $if = 0$ $f = n^{2} = 9q^{2} + 6qr + r^{2}$
 $if = 0$ $f = n^{2} = 9q^{2} + 6qr + 1$
 $= 3(3q^{2} + 2q) + 1$
Since $q \in \mathbb{Z} = 3q^{2} + 6qr + 1$
 $= 3(3q^{2} + 2q) + 1$
Since $q \in \mathbb{Z} = 3q^{2} + 6qr + 1$
 $= 3(3q^{2} + 12q + 4)$
 $if r = 2$ $f = n^{2} = 9q^{2} + 12q + 4$
 $= (9q^{2} + 12q + 3) + 1$
 $= 3[3q^{2} + 4q + 1) + 1$
Since $g \in \mathbb{Z} \Rightarrow 3q^{2} + 6qr + 1 \in \mathbb{Z}$
 \vec{T}) Phene if $n = a = dn = 1b$ $f = mn (a = b)$
 $Lif = m[a = a = dn] = 3d = mn (a = b)$ $m = [ab]$

•

 $y^{2} + x = (2k+1)^{2} + 2k+1 = 4|k^{2}+4|k+1 + 2|k+1 = 2k^{3}k+4 = 4|k^{2}+4k+1 = 2(2k^{2}+3k+1) = 2k^{3}k+4 = 4|k^{2}+4k+2 = 2(2k^{2}+3k+1) = 2k^{3}+4 = 2k^{3}+4$