Textbooks: *Linear Algebra, 6th edition, Larson Falvo* **Calculator Requirements** A Ti-89 or Ti N-Spire is required

Catalog Description:

Vector, vector functions, linear functions, solutions of systems of linear equations, matrices, determinants and eigenvalues.

Context: This course supports the following institutional goals (IG), the goals of the Bible and liberal arts core (BL), and the Division of Mathematical Science goals (MS)

- IG 3: To develop in students Christ-like character through disciplined, Spirit-filled living.
- IG 4: To direct students toward a biblical life view that integrates God's Truth into practical Christian living.
- IG 5: To prepare students to excel intellectually and vocationally by offering diverse academic programs rooted in biblical truth and centered on a liberal arts core.
- BL 3c: Will equip students to understand the physical world as God's creation, as a stewardship given to man, and as the physical expression of His glory
- BL 4: Demonstrate critical thinking in analyzing, evaluating, and synthesizing information and ideas.
- BL 5: Develop solutions to problems, working independently and with others, through critical and creative thinking.
- MS 3 Provide the student a platform for continued learning and development of his God-Given abilities.
- MS 5: Provide an appropriate liberal arts complement to a wide variety of majors.
- MM 4. Provide a solid foundations for graduate studies in mathematics.

Course goals: This course is designed to

- 1. Ensure that students have the mathematical skills needed to be successful in everyday life. (IG 4, 5)
- 2. Demonstrate mathematics as a tool that reveals God's handiwork in the world around us. (BL 3c)
- 3. Develop Godly character traits such as self-discipline, perseverance, honesty, and precision. (IG 3)
- 4. Develop thinking and reasoning skills. (BL 4, 5)
- 5. Mature the student in the theory and application of mathematics (MS1)
- 6. Provide a foundation for other mathematics, science, or computer courses. (MS 5)
- 7. For those students taking Abstract Algebra, this will be the first course in which terms such as kernal, homomorphism, isomorphism are found. Learn these concepts well and it will keep you in good stead later. (MS3 and MM 4)

Course Objectives:

	The students will be able to	Course Goals Supported	Course Content	Assessment
1.	To find a row echelon form or the reduced row echelon form of a system of equations via Gaussian(Gauss-Jordon) elimination	CG 1, CG 3, CG 5	Chapter 1	Hw, Test
2.	To determine the solutions of a system of equations by looking at its RREF form.	CG 3, CG 4	Chapter 1	HW, Test
3.	Apply linear systems to problems such as curve fitting, Network Analysis, Chemical Reaction	CG 2, CG 4, CG 5	Chapter 1	HW
4.	Perform operations on Matrices	CG 1, CG 3, CG 5	Chapter 2	HW, Quiz, Test
5.	Know the algebraic properties of Matrices.	CG 1, CG 3, CG 5, CG 7	Chapter 2	HW, Quiz, Test,
6.	Find Inverses of Matrices	CG 1, CG 3CG 5	Chapter 2	HW, Test

7.	Perform elementary row operations	CG 1, CG 2, CG 3,	Chapter 2	HW, Test
<i>,</i> .	on Matrices, both directly and by	CG 4, CG 5	Chapter 2	1177, 1031
	multiplying the appropriate matrix on	CG 1, CG 5		
	the left.			
8.	Apply the operations of matrices to	CG 2, CG 4, CG 5	Chapter 2	HW, Test
	answer questions in stochastics,	, ,	1	,
	cryptography and Leontief input-			
	output models.			
9.	Find Determinants of Matrices	CG 1, CG 3, CG 5	Chapter 3	HW, Quiz, Test
10.	Evaluate Determinants via	CG 1, CG 2, CG 3,	Chapter 3	HW, Quiz, Test
	elementary row operations	CG 4, CG 5, CG 7		
11.	To Know when a square matrix is	CG 1, CG 2, CG 3,	Chapter 3	HW, Test
	invertible or not, and to write an	CG 4, CG 5, CG 6,		
	invertible matrix as a product of	CG 7		
	elementary matrices			
12.	To find the eigenvalues and	CG 2, CG4	Chapter 3	HW, Test
	eigenvectors of a matrix.			
13.	To define a Vector space and be able	CG 1, CG 3, CG 5	Chapter 4	HW, Quiz, Test
	to determine if a set is a vector space			
14.	To determine if a set is a subspace of	CG1, CG2, CG 3,	Chapter 4	HW, Quiz, Test
	an exiting vector space	CG 4, CG 5		
15.	To determine is a set is a linear	CG1, CG 3, CG 5,	Chapter 4	HW, Quiz, Test
	independent, or spans a set, or is a	CG 7		
	basis for a vector space.			
16.	To find a basis for the row space or	CG1, CG 3, CG 5,	Chapter 4	HW, Quiz, Test
	column space of a matrix	CG 7		
17.	To determine the rank of matrix and	CG 1, CG 3, CG 5	Chapter 4	HW, Test
10	the dimension of a subspace	664 664 664		****
18.	To find a coordinate matrix, relative	CG 1, CG 2 CG 3,	Chapter 4	HW, Test
10	to and set of basis	CG 4, CG 5, CG 7	Cl	IIIV Total
19.	To define and determine if a space is	CG 1, CG 3, CG 5,	Chapter 5	HW, , Test
20.	an inner product space To determine the length of an vector,	CG 6, CG 7 CG 1, CG 2 CG 3,	Chapter 5	HW, Test
20.	and the angle between vectors in an	CG 4 CG 5, CG 6,	Chapter 3	Hw, Test
	inner product space	CG 7 CG 5, CG 6,		
21	To find an orthonormal basis for a	CG 1, CG 2 CG 3,	Chapter 5	HW, Test
21	given basis in an inner product space	CG 4, CG 5, CG 6,	Chapter 5	11W, Test
	using the Gram- Schmidt process	CG 7		
22	Find a Fourier approximation to a	CG 1, CG 2 CG 3,	Chapter 5	HW, Test
	polynomial	CG 4, CG 5, CG 6,	Chapter 5	1111, 1000
	F 7 0 0 0 0 0 0	CG 7		
23.	To define and determine if a	CG 1, CG 2 CG 3,	Chapter 6	HW, Quiz, Test
	transformation is a linear	CG 4, CG 5, CG 6,	r	
	transformation	CG 7		
24.	To find a basis for the kernal,	CG 1, CG 2 CG 3,	Chapter 6	HW, Test
	domain, and range of a linear	CG 4, CG 5, CG 6,		
	transformation	CG 7		
25.	To determine if a linear	CG 1, CG 2 CG 3,	Chapter 6	HW, Test
	transformation is 1-1 or onto	CG 4, CG 6, CG 7		
26.	To write a linear transformation as a	CG 1, CG 2 CG 3,	Chapter 6	HW, Test
	matrix.	CG 4, CG 5, CG 6,		
		CG 7		
27/	To determine if two matrices	CG 1, CG 2 CG 3,	Chapter 6	HW, Test
	represent the same linear	CG 4, CG 5, CG 6,		
	transformation, that is if they are	CG 7	1	

similar.		