
Appendix A Proofs of Selected Theorems A1

A Proofs of Selected Theorems

Proof To prove Property 2, choose Because you know that there
exists such that implies You also know
that there exists such that implies Let be
the smaller of and then implies that

and

So, you can apply the triangle inequality to conclude that

which implies that

The proof that

is similar.

To prove Property 3, given that

and

you can write

Because the limit of is and the limit of is you have

and lim
x→c  �g�x� � K� � 0.lim

x→c  � f�x� � L� � 0

K,g�x�L,f�x�

f�x�g�x� � � f �x� � L� �g�x� � �� � �Lg�x� � � f�x�� � LK.

lim
x→c  g�x� � Klim

x→c  f�x� � L

lim
x→c  � f �x� � g�x�� � L � K

lim
x→c

 � f�x� � g�x�� � L � K � lim
x→c

 f�x� � lim
x→c

 g�x�.

�� f�x� � g�x�� � �L � K�� � � f�x� � L� � �g�x� � K� <
�

2
�

�

2
� �

�g�x� � K� <
�

2
.� f�x� � L� <

�

2

0 < �x � c� < ��2;�1

��g�x� � K� < ��2.0 < �x � c� < �2�2 > 0
� f�x� � L� < ��2.0 < �x � c� < �1�1 > 0

��2 > 0,� > 0.

THEOREM 1.2 Properties of Limits (Properties 2, 3, 4, and 5)

(page 59)

Let and be real numbers, let be a positive integer, and let and be 
functions with the limits

and

2. Sum or difference:

3. Product:

4. Quotient:

5. Power:

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

lim
x→c

 � f�x��n
� Ln

K 	 0lim
x→c

 
f �x�
g�x� �

L
K

, 

lim
x→c

 � f�x�g�x�� � LK 

lim
x→c

 � f�x� ± g�x�� � L ± K 

lim
x→c

 g�x� � K.lim
x→c

 f�x� � L

gfncb
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Let Then there exists such that if then

and

which implies that

So,

Furthermore, by Property 1, you have

and

Finally, by Property 2, you obtain

To prove Property 4, note that it is sufficient to prove that

Then you can use Property 3 to write

Let Because there exists such that if

then 

which implies that

That is, for 

or

Similarly, there exists a such that if then

Let be the smaller of and For you have

So,

Finally, the proof of Property 5 can be obtained by a straightforward application of
mathematical induction coupled with Property 3.

lim
x→c  

1
g�x� �

1
K

.

1

�K� 

2

�K� 
�K�2

2
 � � �.� 1

g�x� �
1
K� � �K � g�x�

g�x�K � �
1

�K� 

1

�g�x�� �K � g�x��  <

0 < �x � c� < �,�2.�1�

�g�x� � K� < �K�2

2
 �.

0 < �x � c� < �2,�2 > 0

1

�g�x�� <
2

�K�
.�K�

2
< �g�x��

0 < �x � c� < �1,

�K� � �g�x� � ��K� � g�x��� � �g�x�� � ��K� � g�x�� < �g�x�� �
�K�
2

.

�g�x� � K� < �K�
2

0 < �x � c� < �1,

�1 > 0lim
x→c  g�x� � K,� > 0.

lim
x→c  

f�x�
g�x� � lim

x→c
 f �x� 1

g�x� � lim
x→c

 f�x� 
  lim
x→c

 
1

g�x� �
L
K

.

lim
x→c  

1
g�x� �

1
K

.

 � LK.

 � 0 � LK � KL � LK

 lim
x→c  f�x�g�x� � lim

x→c
 � f�x� � L� �g�x� � K� � lim

x→c
 Lg�x� � lim

x→c
 Kf �x� � lim

x→c
 LK

lim
x→c  Kf�x� � KL.lim

x→c  Lg�x� � LK

lim
x→c  [ f�x� � L� �g�x� � K� � 0.

�� f�x� � L� �g�x� � K� � 0� � � f�x� � L� �g�x� � K� < �� < �.

�g�x� � K � 0� < �� f�x� � L � 0� < �

0 < �x � c� < �,� > 00 < � < 1.

A2 Appendix A Proofs of Selected Theorems
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Proof Consider the case for which and is any positive integer. For a given
you need to find such that

whenever

which is the same as saying

whenever

Assume which implies that Now, let be the smaller of
the two numbers.

and

Then you have

 �� < n�x � n�c < �.

 n�c � � < n�x  < n�c � �

 � n�c � ��n
< x  < � n�c � ��n

 � n�c � ��n
� c < x � c  < � n�c � ��n

� c

 ��c � � n�c � ��n
 � < x � c  < � n�c � ��n

� c

 �� < x � c  < �

� n�c � ��n
� cc � � n�c � ��n

�0 < n�c � � < n�c.� < n�c,

�� < x � c < �.�� < n�x � n�c < �

0 < �x � c� < �� n�x � n�c� < �

�  >  0�  >  0,
nc  >  0

Proof For a given you must find such that

whenever

Because the limit of as is you know there exists such that

whenever

Moreover, because the limit of as is you know there exists such that

whenever

Finally, letting you have

whenever 0 < �x � c� < �.� f�g�x�� � f�L�� < �

u � g�x�,

0 < �x � c� < �.�g�x� � L� < �1

� > 0L,x → cg�x�
�u � L� < �1.� f�u� � f�L�� < �

�1 > 0f�L�,x → Lf�x�

0 < �x � c� < �.� f�g�x�� � f�L�� < �

� > 0� > 0,

Appendix A Proofs of Selected Theorems A3

THEOREM 1.4 The Limit of a Function Involving a Radical

(page 60)

Let be a positive integer. The limit below is valid for all when is odd,
and is valid for when is even.

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

lim
x→c  

n�x � n�c.

nc > 0
ncn

THEOREM 1.5 The Limit of a Composite Function (page 61)

If and are functions such that and then

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

lim
x→c  f�g�x�� � f 	 lim

x→c
  g�x�
 � f�L�.

lim
x→L  f�x� � f�L�,lim

x→c  g�x� � Lgf
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Proof Let be the limit of as Then, for each there exists a 
such that in the open intervals and and

whenever

Because for all in the open interval other than it follows that

whenever

So, the limit of as is also L.x → cf�x�

0 < �x � c� < �.� f�x� � L� < �

x � c,xf�x� � g�x�

0 < �x � c� < �.�g�x� � L� < �

�c, c � ��,�c � �, c�f�x� � g�x�
� > 0� > 0x → c.g�x�L

Proof For there exist and such that

whenever

and

whenever

Because for all in an open interval containing except possibly
at itself, there exists such that for Let

be the smallest of and Then, if it follows that
and which implies that

and

and

Now, because it follows that which implies
that Therefore,

lim
x→c  f�x� � L.

� f�x� � L� < �.
L � � < f�x� < L � �,h�x� � f�x� � g�x�,

g�x� < L � �. L � � < h�x�
�� < g�x� � L < ��� < h�x� � L < �

�g�x� � L� < �,�h�x� � L� < �
0 < �x � c� < �,�3.�1, �2,�

0 < �x � c� < �3.h�x� � f�x� � g�x��3 > 0c
c,xh�x� � f�x� � g�x�

0 < �x � c� < �2.�g�x� � L� < �

0 < �x � c� < �1�h�x� � L� < �

�2 > 0�1 > 0� > 0

A4 Appendix A Proofs of Selected Theorems

THEOREM 1.7 Functions That Agree at All But One Point 

(page 62)

Let be a real number, and let for all in an open interval
containing If the limit of as approaches exists, then the limit of 
also exists and

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

lim
x→c  f�x� � lim

x→c  g�x�.

f �x�cxg�x�c.
x 	 cf�x� � g�x�c

THEOREM 1.8 The Squeeze Theorem (page 65)

If for all in an open interval containing except possibly 
at itself, and if

then exists and is equal to 

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

L.lim
x→c  f �x�

lim
x→c  h�x� � L � lim

x→c
 g�x�

c
c,xh�x� � f�x� � g�x�
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Proof Because and are continuous at you can write

and

For Property 1, when is a real number, it follows from Theorem 1.2 that

Thus, is continuous at 

For Property 2, it follows from Theorem 1.2 that

Thus, is continuous at 

For Property 3, it follows from Theorem 1.2 that

Thus, is continuous at 

For Property 4, when it follows from Theorem 1.2 that

Thus, is continuous at x � c.
f
g

  �
f
g

�c�.

  �
f�c�
g�c�

 �
lim
x→c  

f �x�

lim
x→c

 g�x�  

 lim
x→c

 
f
g

�x� � lim
x→c

 
f �x�
g�x�

g�c� 	 0,

x � c.fg

 � � fg��c�.
 � f�c�g�c�

 � lim
x→c

 � f �x�� lim
x→c

 �g�x��

 lim
x→c

 � fg��x� � lim
x→c

 � f�x�g�x��

x � c.f ± g

 � � f ± g��c�.
 � f�c� ± g�c�

 � lim
x→c

 � f �x�� ± lim
x→c

 �g�x��

 lim
x→c

 � f ± g��x� � lim
x→c

 � f�x� ± g�x��

x � c.bf

lim
x→c

 ��bf��x�� � lim
x→c

 �bf�x�� � b lim
x→c

 � f�x�� � b f�c� � �bf ��c�.

b

lim
x→c

 g�x� � g�c�.lim
x→c

  f�x� � f�c�

x � c,gf

Appendix A Proofs of Selected Theorems A5

THEOREM 1.11 Properties of Continuity (page 75)

If is a real number and and are continuous at then the functions 
listed below are also continuous at 

1. Scalar multiple:

2. Sum or difference:

3. Product:

4. Quotient:

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

g�c� 	 0
f
g

,

fg

f ± g

bf

c.
x � c,gfb
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A6 Appendix A Proofs of Selected Theorems

Proof Consider the case for which and there exists such that
implies Then for choose such that

implies that

and such that

implies that

Now let be the smaller of and Then it follows that

implies that

So, it follows that

and the line is a vertical asymptote of the graph of h.x � c

lim
x→c�  

f�x�
g�x� � �

f�x�
g�x� >

f�c�
2

 � 2M
f�c�� � M.0 < x � c < �

�2.�1�

0 < g�x� <
f�c�
2M

.0 < x � c < �2

�2

f�c�
2

< f�x� <
3f�c�

2
0 < x � c < �1

�1M > 0,g�x� > 0.c < x < b
b > cf�c� > 0,

Proof The derivative of at is given by

Let Then as So, replacing by you have

f��c� � lim
x→0

  
f�c � x� � f�c�

x
� lim

x→c
  

f�x� � f�c�
x � c

.

x,c � xx → 0.x → cx � c � x.

f��c� � lim
x→0

 
f�c � x� � f�c�

x
.  

cf

THEOREM 1.14 Vertical Asymptotes (page 85)

Let and be continuous on an open interval containing If 
and there exists an open interval containing such that for 

all in the interval, then the graph of the function

has a vertical asymptote at 
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

x � c.

h�x� �
f �x�
g�x�

x 	 c
g�x� 	 0cg�c� � 0,

f�c� 	 0,c.gf

Alternative Form of the Derivative (page 101)

The derivative of at is

provided this limit exists.
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

f��c� � lim
x→c

  
f �x� � f �c�

x � c

cf
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Proof In Section 2.4, you let and used the alternative form of the 
derivative to show that provided for values of other
than Now consider a more general proof. Begin by considering the derivative of 

For a fixed value of define a function such that

Because the limit of as does not depend on the value of you have

and you can conclude that is continuous at 0. Moreover, because when
the equation

is valid whether is zero or not. Now, by letting you can use
the continuity of to conclude that

which implies that

Finally,

and taking the limit as you have

 �
du
dx



dy
du

.

 �
du
dx

 f��u�

 �
du
dx

�0� �
du
dx

 f��u�

 
dy
dx

�
du
dx � lim

x→0  ��u�� �
du
dx

 f��u�

x → 0,

x 	 0y � u��u� � uf��u� → y
x

�
u
x

 ��u� �
u
x

 f��u�,

lim
x→0  ��u� � 0.

lim
x→0  u � lim

x→0
�g�x � x� � g�x�� � 0

g
u � g�x � x� � g�x�,x

y � x��x� � xf��x�

x � 0,
y � 0�

lim
x→0  ��x� � lim

x→0�
y
x

� f��x�� � 0

��0�,x → 0��x�

��x� � 0,

y
� f��x�,

     

x

x � 0

x 	 0.

�x,

f��x� � lim
x→0

  
f�x � x� � f�x�

x
� lim

x→0
 
y
x

f.c.
xg�x� 	 g�c�h��c� � f��g�c��g��c�,

h�x� � f�g�x��

Appendix A Proofs of Selected Theorems A7

THEOREM 2.10 The Chain Rule (page 130)

If is a differentiable function of and is a differentiable 
function of then is a differentiable function of and 

or, equivalently,

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

d
dx

� f �g�x��� � f��g�x��g��x�.

dy
dx

�
dy
du



du
dx

xy � f �g�x��x,
u � g�x�u,y � f �u�
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Proof Assume that is concave upward on Then, is increasing on 
Let be a point in the interval The equation of the tangent line to the graph
of at is given by

If is in the open interval then the directed distance from point (on the
graph of ) to the point (on the tangent line) is given by

Moreover, by the Mean Value Theorem there exists a number in such that

So, you have

The second factor is positive because Moreover, because is increasing,
it follows that the first factor is also positive. Therefore, and you
can conclude that the graph of lies above the tangent line at If is in the open 
interval a similar argument can be given. This proves the first statement. The
proof of the second statement is similar.

�a, c�,
xx.f

d > 0� f��z� � f��c��
f�c < x.�x � c�

 � � f��z� � f��c���x � c�.
 � f��z��x � c� � f��c��x � c�

 d � f�x� � f �c� � f��c��x � c�

 f��z� �
f�x� � f�c�

x � c
.

�c, x�z

 � f�x� � f �c� � f��c��x � c�.
 d � f�x� � � f�c� � f��c��x � c��

�x, g�x��f
�x, f�x���c, b�,x

g�x� � f�c� � f��c��x � c�.

cf
I � �a, b�.c

�a, b�.f�I � �a, b�.f

Proof For Property 1, assume for all in Then, by Theorem 3.5,
is increasing on Thus, by the definition of concavity, the graph of is concave
upward on 

For Property 2, assume for all in Then, by Theorem 3.5, is decreasing
on Thus, by the definition of concavity, the graph of is concave downward on
�a, b�.

f�a, b�.
f��a, b�.xf��x� < 0

�a, b�.
f�a, b�.

f��a, b�.xf��x� > 0

A8 Appendix A Proofs of Selected Theorems

Concavity Interpretation (page 187)

1. Let be differentiable on an open interval If the graph of is concave 
upward on then the graph of lies above all of its tangent lines on 

2. Let be differentiable on an open interval If the graph of is concave
downward on then the graph of lies below all of its tangent lines on 

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

I.fI,
fI.f

I.fI,
fI.f

THEOREM 3.7 Test for Concavity (page 188)

Let be a function whose second derivative exists on an open interval 

1. If for all in then the graph of is concave upward in 

2. If for all in then the graph of is concave downward in 

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

I.fI,xf ��x� < 0

I.fI,xf ��x� > 0

I.f
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Proof Begin by proving that

For let Then, for you have

So, by the definition of a limit at infinity, you can conclude that the limit of as
is 0. Now, using this result, and letting you can write the following.

The proof of the second part of the theorem is similar.

 � 0

 � c� n�0 �m

 � c	 n� lim
x→�

 
1
x


m

 � c	 lim
x→�

 n�1
x


m

 � c� lim
x→�

 	 1
n�x


m

�

 lim
x→�

 
c
xr � lim

x→�
 

c
xm�n

r � m�n,x →�
1�x

�1x � 0� < �.
1
x

< �x > M �
1
�

x  >  M,M � 1��.� > 0,

lim
x→�

 
1
x

� 0.

Appendix A Proofs of Selected Theorems A9

THEOREM 3.10 Limits at Infinity (page 196)

If is a positive rational number and is any real number, then

Furthermore, if is defined when then 

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

lim
x→��

 
c
xr � 0.x < 0,xr

lim
x→�

 
c
xr � 0.

cr
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Proof The proof of Property 1 is straightforward. By adding to itself times, you
obtain a sum of 

To prove Property 2, write the sum in increasing and decreasing order and add 
corresponding terms, as follows.

So,

To prove Property 3, use mathematical induction. First, if the result is true
because

Now, assuming the result is true for you can show that it is true for 
as follows.

Property 4 can be proved using a similar argument with mathematical induction.

 �
�k � 1��k � 2��2�k � 1� � 1�

6

 �
k � 1

6
 ��2k � 3��k � 2��

 �
k � 1

6
 �2k2 � k � 6k � 6�

 �
k�k � 1��2k � 1�

6
� �k � 1�2

�
k�1

i�1
 i 2 � �

k

i�1
 i 2 � �k � 1�2

n � k � 1,n � k,

�
1

i�1
 i 2 � 12 � 1 �

1�1 � 1��2 � 1�
6

.

n � 1,

�
n

i�1
 i �

n�n � 1�
2

.

 2 �
n

i�1
 i � �n � 1� � �n � 1� � �n � 1� � .  .  . � �n � 1� � �n � 1�

 �
n

i�1
i �  n  � �n � 1� � �n � 2� � .  .  . �  2  �  1

 �
n

i�1
 i �  1  �  2  �  3  � .  .  . � �n � 1� �  n

cn.
nc

A10 Appendix A Proofs of Selected Theorems

THEOREM 4.2 Summation Formulas (page 255)

1. is a constant

2.

3.

4.

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

�
n

i�1
i3 �

n2�n � 1�2

4

�
n

i�1
i2 �

n�n � 1��2n � 1�
6

�
n

i�1
i �

n�n � 1�
2

c�
n

i�1
c � cn,

→ → → →

→ → → → →

termsn
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Proof To prove Property 1, suppose, on the contrary, that

Then, let be a partition of and let

be a Riemann sum. Because it follows that Now, for sufficiently
small, you have which implies that

which is not possible. From this contradiction, you can conclude that

To prove Property 2, note that implies that So, you can
apply the result of Property 1 to conclude that

 �b

a

 f�x� dx � �b

a

 g�x� dx.

 0 � �b

a

 g�x� dx � �b

a

 f �x� dx

 0 � �b

a

 �g�x� � f�x�� dx

g�x� � f�x� � 0.f�x� � g�x�

0 � �b

a

 f�x� dx.

�
n

i�1
 f�ci� xi � R < I �

I
2

< 0

�R � I� < �I�2,
��R � 0.f�x� � 0,

R � �
n

i�1
 f�ci� xi

�a, b�,a � x0  <  x1  <  x2  <  .  .  .  <  xn � b

�b

a

 f�x� dx � I < 0.

Appendix A Proofs of Selected Theorems A11

THEOREM 4.8 Preservation of Inequality (page 272)

1. If is integrable and nonnegative on the closed interval then

2. If and are integrable on the closed interval and for 
every in then

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

�b

a

 f �x� dx � �b

a

 g�x� dx.

�a, b�,x
f �x�  ≤  g�x��a, b�gf

0 � �b

a

 f �x� dx.

�a, b�,f
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Proof Recall from Section P.3 that a function is one-to-one if for and in its
domain

Let Then for So is increasing on its entire domain 

and therefore is strictly monotonic (see Section 3.3). Choose and in the
domain of such that Because is strictly monotonic, it follows that either

or

In either case, So, is one-to-one.

To verify the limits, begin by showing that From the Mean Value Theorem for
Integrals, you can write 

where is in 

This implies that

Now, let be any positive (large) number. Because is increasing, it follows that if
then

However, because it follows that

This verifies the second limit. To verify the first limit, let Then, as
and you can write

 � ��.

 � � lim
z→�

 ln z

 � lim
z→�

 ��ln z�

lim
x→0�

 ln x � lim
x→0�	�ln 

1
x


x → 0�,
z →�z � 1�x.

ln x > 2N ln 2 � 2N	1
2
 � N.

ln 2 �
1
2,

ln x > ln 22N � 2N ln 2.

x > 22N,
ln xN

 1 �  ln 2 �
1
2

.

 1 �  
1
c

 �
1
2

1 �  c  � 2

�1, 2�.c

ln 2 � �2

1
 
1
x
 dx �

1
c

�2 � 1� �
1
c

ln 2 �
1
2.

f �x� � ln xf�x1� 	 f �x2�.

f �x1� > f �x2�.f�x1� < f �x2�

fx1 	 x2.f
x2x1�0, �)

fx > 0.f��x� �
1
x

> 0f �x� � ln x.

f�x1� 	 f �x2�.x1 	 x2

x2x1f

A12 Appendix A Proofs of Selected Theorems

Properties of the Natural Logarithmic Function (page 319)

The natural logarithmic function is one-to-one.

and

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

lim
x→�

 ln x � �lim
x→0�

 ln x � ��
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Proof To prove Property 1, first show that if is continuous on and has an inverse
function, then is strictly monotonic on Suppose that were not strictly monotonic.
Then there would exist numbers in such that but is not
between and Without loss of generality, assume By
the Intermediate Value Theorem, there exists a number between and such that

So, is not one-to-one and cannot have an inverse function. So, must be
strictly monotonic.

Because is continuous, the Intermediate Value Theorem implies that the set of 
values of 

forms an interval Assume that is an interior point of From the previous argument,
is an interior point of Let There exists such that

Because is strictly monotonic on the set of values forms an interval
Let such that Finally, if

then 

So, is continuous at A similar proof can be given if is an endpoint.

To prove Property 2, let and be in the domain of with Then, there
exist and in the domain of such that

Because is increasing, holds precisely when Therefore,

which implies that is increasing. (Property 3 can be proved in a similar way.)f�1

f�1�y1� � x1 < x2 � f�1�y2�

x1 < x2.f�x1� < f �x2�f

f�x1� � y1 < y2 � f�x2�.

fx2x1

y1 < y2.f�1,y2y1

aa.f�1

� f�1�y� � f�1�a�� < �1 < �.�y � a� < �,

�a � �, a � �� � J1.� > 0J1 � J.
� f�x�: x � I1�I1,f

I1 � � f�1�a� � �1,  f
�1�a� � �1� � I.

0 < �1 < �� > 0.I.f�1�a�
J.aJ.

� f�x�: x � ��

f
f

fff�x0� � f�x3�.
x2x1x0

f �x1� < f�x3� < f�x2�.f�x3�.f�x1�
f�x2�x1 < x2 < x3,Ix1, x2, x3

fI.f
If

Appendix A Proofs of Selected Theorems A13

THEOREM 5.8 Continuity and Differentiability of Inverse 

Functions (page 341)

Let be a function whose domain is an interval If has an inverse function,
then the following statements are true.

1. If is continuous on its domain, then is continuous on its domain.

2. If is increasing on its domain, then is increasing on its domain.

3. If is decreasing on its domain, then is decreasing on its domain.

4. If is differentiable on an interval containing and then 
is differentiable at 

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

f �c�.
f�1f��c� 	 0,cf

f�1f

f�1f

f�1f

fI.f
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Finally, to prove Property 4, consider the limit

where is in the domain of and Because is differentiable on an 
interval containing is continuous on that interval, and so is at So,
implies that and you have

So, exists, and is differentiable at f�c�.f�1� f�1���a�

 �
1

f��c�.

 �
1

lim
x→c

 
f�x� � f�c�

x � c

 � lim
x→c

 
1

	 f�x� � f�c�
x � c 


 � f�1���a� � lim
x→c

 
x � c

f�x� � f�c�

x → c,
y → aa.f�1fc,

ff�1�a� � c.f�1a

� f�1���a� � lim
y→a

 
f�1�y� � f�1�a�

y � a

Proof From the proof of Theorem 5.8, letting you know that is 
differentiable. Using the Chain Rule, differentiate both sides of the equation 
to obtain

Because you can divide by this quantity to obtain

d
dx

�g�x�� �
1

f��g�x��.

f��g�x�� 	 0,

1 � f��g�x�� d
dx

�g�x��.

x � f�g�x��
ga � x,

A14 Appendix A Proofs of Selected Theorems

THEOREM 5.9 The Derivative of an Inverse Function (page 341)

Let be a function that is differentiable on an interval If has an inverse 
function then is differentiable at any for which Moreover,

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

f��g�x�� 	 0.g��x� �
1

f��g�x�� ,

f��g�x�� 	 0.xgg,
fI.f
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Proof To prove Property 2, you can write

Because the natural logarithmic function is one-to-one, you can conclude that

ea

eb � ea�b.

ln	ea

eb
 � ln ea � ln eb � a � b � ln�ea� b�

Proof Let Taking the natural logarithm of each side, you have

Because the natural logarithmic function is continuous, you can write

Letting you have

Finally, because you know that and you can conclude that

lim
x→�

 	1 �
1
x


x

� e.

y � e,ln y � 1,

 � 1.

 �
1
x
  at  x � 1

 �
d
dx

 ln x  at  x � 1

 � lim
t→0�

 
ln�1 � t� � ln 1

t

 ln y � lim
t→0�

 
ln�1 � t�

t

x �
1
t
,

 ln y � lim
x→�

 �x ln	1 �
1
x
� � lim

x→�
 ln �1 � �1�x��

1�x �.

ln y � ln� lim
x→�

 	1 �
1
x


x

�.

y � lim
x→�

 	1 �
1
x


x

.

Appendix A Proofs of Selected Theorems A15

THEOREM 5.10 Operations with Exponential Functions 

(Property 2) (page 347)

Let and be any real numbers.

2.

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

ea

eb � ea�b

ba

THEOREM 5.15 A Limit Involving e (page 360)

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

lim
x→�

 	1 �
1
x


x

� lim
x→�

 	x � 1
x 


x

� e
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Proof

Method 1: Apply Theorem 5.9.

Let and Because is differentiable on

you can apply Theorem 5.9.

If is a differentiable function of then you can use the Chain Rule to write

where

Method 2: Use implicit differentiation.

Let So, and you can use implicit differentiation.

If is a differentiable function of then you can use the Chain Rule to write

where u� �
du
dx

.
d
dx

�arccos u� �
�u�

�1 � u2
,

x,u

 
dy
dx

�
�1

�1 � x2

 
dy
dx

�
�1

�1 � cos2 y

 
dy
dx

�
�1
sin y

 �sin y 
dy
dx

� 1

 cos y � x

cos y � x,0 � y � �.y � arccos x,

u� �
du
dx

.
d
dx

�arcsin u� �
u�

�1 � u2
,

x,u

 �
1

�1 � x2

 �
1

�1 � sin2�arcsin x�

 �
1

cos�arcsin x�

 g��x� �
1

f��g�x��

�
�

2
� y �

�

2

fg�x� � arcsin x.f �x� � sin x

A16 Appendix A Proofs of Selected Theorems

THEOREM 5.16 Derivatives of Inverse Trigonometric Functions

(arcsin u and arccos u) (page 369)

Let be a differentiable function of 

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

d
dx

�arccos u� �
�u�

�1 � u2

d
dx

�arcsin u� �
u�

�1 � u2

x.u
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Proof You can assume that because otherwise, by Rolle’s Theorem, it
would follow that for some in Now, define as

Then

and

and by Rolle’s Theorem there exists a point in such that

which implies that 
f��c�
g��c� �

f�b� � f�a�
g�b� � g�a�.

 � 0

 h��c� � f��c� �
f�b� � f�a�
g�b� � g�a� g��c�

�a, b�c

 �
f�a�g�b� � f�b�g�a�

g�b� � g�a�

 h�b� � f�b� � � f�b� � f�a�
g�b� � g�a�� g�b�

 �
f�a�g�b� � f�b�g�a�

g�b� � g�a�

 h�a� � f�a� � � f�b� � f�a�
g�b� � g�a�� g�a�

h�x� � f�x� � � f�b� � f�a�
g�b� � g�a�� g�x�.

h�x��a, b�.xg��x� � 0
g�a� 	 g�b�,

Appendix A Proofs of Selected Theorems A17

THEOREM 8.3 The Extended Mean Value Theorem (page 558)

If and are differentiable on an open interval and continuous on 
such that for any in then there exists a point in such

that 

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

f��c�
g��c� �

f�b� � f �a�
g�b� � g�a�.

�a, b�c�a, b�,xg��x� 	 0
�a, b��a, b�gf
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You can use the Extended Mean Value Theorem to prove L’Hôpital’s Rule. Of the 
several different cases of this rule, the proof of only one case is illustrated. The 
remaining cases where and are left for you to prove.

Proof Consider the case for which and Define the new
functions

and

For any and are differentiable on and continuous on You
can apply the Extended Mean Value Theorem to conclude that there exists a number 
in such that

Finally, by letting approach from the right, you have because
and

� lim
x→c�

 
f��x�
g��x�.� lim

z→c�
 
f��z�
g��z� lim

x→c�
 
f�x�
g�x� � lim

x→c�
 
f��z�
g��z�

c < z < x,
z → c�x → c�,cx

�
f �x�
g�x�.�

f��z�
g��z��

F�x�
G�x� 

F��z�
G��z� �

F�x� � F�c�
G�x� � G�c�

�c, x�
z

�c, x�.�c, x�Gx, c < x < b, F

G�x� � g�x�,     
0,

x 	 c
x � c

.F�x� � f�x�,
0,

     x 	 c
     x � c

lim
x→c�

 g�x� � 0.lim
x→c�

 f�x� � 0

x → cx → c�

Proof The series obtained by deleting the first terms of the given series satisfies the
conditions of the Alternating Series Test and has a sum of 

Consequently, which establishes the theorem.�S � SN� � �RN� � aN�1,

 � aN�1 � �aN�2 � aN�3� � �aN�4 � aN�5� � .  .  . � aN�1

 �RN� � aN�1 � aN�2 � aN�3 � aN�4 � aN�5 � .  .  .
 � ��1�N �aN�1 � aN�2 � aN�3 � .  .  .�
 � ��1�N aN�1 � ��1�N�1 aN�2 � ��1�N�2 aN�3 � .  .  .

 RN � S � SN � �
�

n�1
 ��1�n�1 an � �

N

n�1
 ��1�n�1 an

RN.
N

A18 Appendix A Proofs of Selected Theorems

THEOREM 8.4 L’Hôpital’s Rule (page 558)

Let and be functions that are differentiable on an open interval 
containing except possibly at itself. Assume that for all in 

except possibly at itself. If the limit of as approaches 
produces the indeterminate form then

provided the limit on the right exists (or is infinite). This result also applies 
when the limit of as approaches produces any one of the 
indeterminate forms or 
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

���������.���, ������, ������,
cxf�x��g�x�

lim
x→c

  
f �x�
g�x� � lim  

x→c

f��x�
g��x�

0�0,
cxf�x��g�x�c�a, b�,

xg��x� 	 0cc,
�a, b�gf

THEOREM 9.15 Alternating Series Remainder (page 621)

If a convergent alternating series satisfies the condition then the
absolute value of the remainder involved in approximating the sum by 
is less than (or equal to) the first neglected term. That is,

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

�S � SN� � �RN� � aN�1.

SNSRN

an�1 � an,
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Proof To find fix in and write where is
the Taylor polynomial for Then let be a function of defined by

The reason for defining in this way is that differentiation with respect to has a
telescoping effect. For example, you have

The result is that the derivative simplifies to

for all between and Moreover, for a fixed 

and

Therefore, satisfies the conditions of Rolle’s Theorem, and it follows that there is a
number between and such that Substituting for in the equation for

and then solving for you obtain

Finally, because you have

 f�x� � f�c� � f��c��x � c� � .  .  . �
f �n��c�

n!
 �x � c�n � Rn�x�.

 0 � f�x� � f �c� � f��c��x � c� � .  .  . �
f �n��c�

n!
 �x � c�n � Rn�x�

g�c� � 0,

 Rn�x� �
f �n�1��z�
�n � 1�!  �x � c�n�1.

 0 � �
f �n�1��z�

n!
 �x � z�n � �n � 1�Rn�x� �x � z�n

�x � c�n�1

 g��z� � �
f �n�1��z�

n!
 �x � z�n � �n � 1�Rn�x� �x � z�n

�x � c�n�1

Rn�x�,g��t�
tzg��z� � 0.xcz

g

g�x� � f�x� � f�x� � 0 � .  .  . � 0 � f�x� � f�x� � 0.

g�c� � f�x� � �Pn�x� � Rn�x�� � f�x� � f�x� � 0

x,x.ct

g��t� � �
f �n�1��t�

n!
 �x � t�n � �n � 1�Rn�x� �x � t�n

�x � c�n�1

g��t�

� �f � �t��x � t�. 
d
dt

 ��f�t� � f��t��x � t�� � �f��t� � f��t� � f ��t��x � t�

tg

g�t� � f �x� � f�t� � f��t��x � t� � .  .  . �
f �n� �t�

n!
 �x � t�n � Rn�x� �x � t�n�1

�x � c�n�1.

tgf�x�.nth
Pn�x�Rn�x� � f�x� � Pn�x�,�x 	 c�IxRn�x�,

Appendix A Proofs of Selected Theorems A19

THEOREM 9.19 Taylor’s Theorem (page 642)

If a function is differentiable through order in an interval containing 
then, for each in there exists between and such that

where

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

Rn�x� �
f �n�1��z�
�n � 1�! �x � c�n�1.

f �x� � f �c� � f��c��x � c� �
f � �c�
2!

 �x � c�2 � .  .  . �
f �n��c�

n!
 �x � c�n � Rn�x�

cxzI,xc,
In � 1f
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Proof In order to simplify the notation, the theorem for the power series 
centered at will be proved. The proof for a power series centered at 
follows easily. A key step in this proof uses the completeness property of the set of real
numbers: If a nonempty set of real numbers has an upper bound, then it must have a
least upper bound (see page 591).

It must be shown that if a power series converges at then it
converges for all satisfying Because converges, So,

there exists an integer such that for all Then for 

So, for which implies that

is a convergent geometric series. By the Comparison Test, the series converges.

Similarly, if the power series diverges at where then it diverges
for all satisfying If converged, then the argument above would
imply that converged as well.

Finally, to prove the theorem, suppose that neither Case 1 nor Case 3 is true. Then 
there exist points and such that converges at and diverges at Let

is nonempty because If then 
which shows that is an upper bound for the nonempty set By the completeness
property, has a least upper bound,

Now, if then so diverges. And if then is not an upper
bound for so there exists in satisfying Because 
converges, which implies that converges.� anxn

� anbnb � S,�b� > �x�.SbS,
�x��x� < R,� anxnx�S,�x� > R,

R.S
S.�d�

�x� � �d�,x � S,b � S.SS � �x: � anxn converges�.
d.b� anxndb

� anbn
� andn�d� > �b�.d

b 	 0,x � b,� anxn

� anbn

� � �bd�n

� �bn

dn�
�bd� < 1,�b� < �d�,

�anbn� � �anbn 
dn

dn� � �and
n� �bn

dn� < �bn

dn�.
n � N,n � N.�andn� < 1N > 0

lim
n→�

 andn � 0.� anxn�b� < �d�.b
d 	 0,x � d,� anxn

S

x � cx � 0
� anxn

A20 Appendix A Proofs of Selected Theorems

THEOREM 9.20 Convergence of a Power Series (page 648)

For a power series centered at precisely one of the following is true.

1. The series converges only at 

2. There exists a real number such that the series converges absolutely 
for and diverges for 

3. The series converges absolutely for all 

The number is the radius of convergence of the power series. If the series 
converges only at then the radius of convergence is If the series
converges for all then the radius of convergence is The set of all 
values of for which the power series converges is the interval of convergence
of the power series.
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

x
R � �.x,
R � 0.c,

R

x.
�x � c� > R.�x � c� < R,

R > 0

c.

c,
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Proof If then, by definition, the conic must be a parabola. If then you
can consider the focus to lie at the origin and the directrix to lie to the right of
the origin, as shown in the figure.

For the point you have

and

Given that it follows that

By converting to rectangular coordinates and squaring each side, you obtain

Completing the square produces

If then this equation represents an ellipse. If then and the 
equation represents a hyperbola.

1 � e2 < 0,e > 1,e < 1,

	x �
e2d

1 � e2

2

�
y2

1 � e2 �
e2d2

�1 � e2�2.

 � e2�d2 � 2dx � x2�.
 x2 � y2 � e2�d � x�2

r � e�d � r cos ��.�PF� � �PQ�e

e � �PF�
�PQ�,

�PQ� � d � r cos �.�PF� � r

P � �r, �� � �x, y�,

x

Q
P

F

y

x = d

r

θ

x � dF
e 	 1,e � 1,

Appendix A Proofs of Selected Theorems A21

THEOREM 10.16 Classification of Conics by Eccentricity 

(page 734)

Let be a fixed point ( focus) and let be a fixed line (directrix) in the plane. 
Let be another point in the plane and let (eccentricity) be the ratio of the
distance between and to the distance between and The collection of 
all points with a given eccentricity is a conic.

1. The conic is an ellipse for 

2. The conic is a parabola for 

3. The conic is a hyperbola for 

See LarsonCalculus.com for Bruce Edwards’s video of this proof.

e > 1.

e � 1.

0 < e < 1.

P
D.PFP

eP
DF
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Proof Let be the surface defined by where and are continuous
at Let and be points on surface as shown in the figure. From this 
figure, you can see that the change in from point to point is given by

Between and is fixed and changes. So, by the Mean Value Theorem, there is a
value between and such that

Similarly, between and is fixed and changes, and there is a value between 
and such that

By combining these two results, you can write

If you define and as and it
follows that

By the continuity of and and the fact that and 
it follows that and as and Therefore, by definition, is
differentiable.

fy → 0.x → 0�2 → 0�1→ 0
� y � y,y � y1x � x1 � x � xfyfx

 � � fx�x, y� x � fy�x, y� y� � �1x � �2y.

 z � z1 � z2 � ��1 � fx�x, y�� x � ��2 � fy�x, y�� y

�2 � fy�x � x, y1� � fy�x, y�,�1 � fx�x1, y� � fx�x, y��2�1

z � z1 � z2 � fx�x1, y�x � fy�x � x, y1� y.

z2 � f �x � x, y � y� � f �x � x, y� � fy�x � x, y1� y.

y � y
yy1yxC,B

z1� f �x � x, y� � f �x, y� � fx�x1, y� x.

x � xxx1

xyB,A

 � z1 � z2.

 � � f �x � x, y� � f �x, y�� � � f �x � x, y � y� � f �x � x, y��
 z � f �x � x, y � y� � f �x, y�

CAf
S,CB,A,�x, y�.

fyfx ,f,z � f �x, y�,S

Proof Because and are differentiable functions of you know that both 
and approach zero as approaches zero. Moreover, because is a differentiable
function of and you know that 
where both and as So, for 

from which it follows that
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A22 Appendix A Proofs of Selected Theorems

THEOREM 13.4 Sufficient Condition for Differentiability 

(page 901)

If is a function of and where and are continuous in an open region 
then is differentiable on 

See LarsonCalculus.com for Bruce Edwards’s video of this proof.
R.fR,

fyfxy,xf

THEOREM 13.6 Chain Rule: One Independent Variable

(page 907)

Let where is a differentiable function of and If 
and where and are differentiable functions of then is a 
differentiable function of and

See LarsonCalculus.com for Bruce Edwards’s video of this proof.
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