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INTRODUCTION TO MATHEMATICAL
STATISTICS

10.1 Introduction and Four Data Sets

Before studying empirical models and then parametric models, we review some concepts
from mathematical statistics. Mathematical statistics is a broad subject that includes many
topics not covered in this chapter. For those topics that are covered, it is assumed that you
have had some prior exposure. The topics of greatest importance for constructing actuarial
models are estimation and hypothesis testing. Because the Bayesian approach to statistical
inference is often either ignored or treated lightly in introductory mathematical statistics
texts and courses, it receives more in-depth coverage in this text, in Chapter 13. Bayesian
methodology also provides the basis for the credibility methods covered in Chapter 16.

To see the need for methods of statistical inference, consider the case where your
supervisor needs a model for basic dental payments. One option is to simply announce the
model. You proclaim that it is the lognormal distribution with µ = 5.1239 and σ = 1.0345.
(The many decimal places are designed to give your proclamation an aura of precision.)
When your supervisor, a regulator, or an attorney who has put you on the witness stand,
asks you how you know that to be so, it will likely not be sufficient to answer that “I
just know these things,” “trust me, I am a trained statistician,” “it is too complicated, you
wouldn’t understand,” or “my friend at Gamma Dental uses that model.”

Loss Models: From Data to Decisions, Fifth Edition.
Stuart A. Klugman, Harry H. Panjer, and Gordon E. Willmot.
c© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Companion website: www.wiley.com/go/klugman/lossmodels5e
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Table 10.1 Data Set A.

Number of accidents Number of drivers

0 81,714

1 11,306

2 1,618

3 250

4 40

5 or more 7

An alternative is to collect some data and use it to formulate a model. Most distri-
butional models have two components. The first is a name, such as “Pareto.” The second
is the set of parameter values that complete the specification. Matters would be simpler if
modeling could be done in that order. Most of the time, we need to fix the parameters that
go with a named model before we can decide if we want to use that model.

Because the parameter estimates are based on a sample from the population and not
the entire population, the results will not be the true values. It is important to have an idea
of the potential error. One way to express this error is with an interval estimate. That is,
rather than announcing a particular value, a range of plausible values is presented.

When named parametric distributions are used, the parameterizations used are those
from Appendices A and B.

Alternatively, you may want to construct a nonparametric model (also called an empir-
ical model), where the goal is to determine a model that essentially reproduces the data.
Such models are discussed in Chapter 14.

At this point we present four data sets, referred to as Data Sets A, B, C, and D. They
will be used several times, both in this chapter and in later chapters.

Data Set A This data set is well known in the casualty actuarial literature. It was first
analyzed in the paper [6] by Dropkin in 1959. From 1956 to 1958, he collected data on the
number of accidents by one driver in one year. The results for 94,935 drivers are shown in
Table 10.1.

Data Set B These numbers (and those in the next two data sets) are artificial. They repre-
sent the amounts paid on workers compensation medical benefits but are not related to any
particular policy or set of policyholders. These payments are the full amount of the loss.
A random sample of 20 payments is given in Table 10.2.

Data Set C These observations represent payments on 227 claims from a general liability
insurance policy. The data are shown in Table 10.3.

Data Set D This data set is from the experience of five-year term insurance policies.
The study period is a fixed time period. The columns are interpreted as follows: (1) i
is the policy number, 1–40; and (2) di is the time since issue to when the insured was
first observed. Thus, policies 1–30 were observed from when the policy was sold. The

Table 10.2 Data Set B.

27 82 115 126 155 161 243 294 340 384

457 680 855 877 974 1,193 1,340 1,884 2,558 15,743
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Table 10.3 Data Set C.

Payment range Number of payments

0–7,500 99

7,500–17,500 42

17,500–32,500 29

32,500–67,500 28

67,500–125,000 17

125,000–300,000 9

Over 300,000 3

Table 10.4 Data Set D.

i di xi ui i di xi ui

1 0 — 0.1 16 0 4.8 —

2 0 — 0.5 17 0 — 4.8

3 0 — 0.8 18 0 — 4.8

4 0 0.8 — 19–30 0 — 5.0

5 0 — 1.8 31 0.3 — 5.0

6 0 — 1.8 32 0.7 — 5.0

7 0 — 2.1 33 1.0 4.1 —

8 0 — 2.5 34 1.8 3.1 —

9 0 — 2.8 35 2.1 — 3.9

10 0 2.9 — 36 2.9 — 5.0

11 0 2.9 — 37 2.9 — 4.8

12 0 — 3.9 38 3.2 4.0 —

13 0 4.0 — 39 3.4 — 5.0

14 0 — 4.0 40 3.9 — 5.0

15 0 — 4.1

remaining policies were issued prior to the start of the observation period and were known
to be alive at that duration. (3) xi is the time since issue to when the insured was observed to
die. Those who were not observed to die during the five years have “—” in that column. (4)
ui is the latest time since issue at which those who were not observed to die were observed.
That could be because they surrendered their policy before the five years elapsed, reached
the end of the five-year term, or the study ended while the policy was still in force. The
data are shown in Table 10.4.

10.2 Point Estimation

10.2.1 Introduction

Regardless of how a model is estimated, it is extremely unlikely that the estimated model
will exactly match the true distribution. Ideally, we would like to be able to measure
the error we will be making when using the estimated model. But doing so is clearly
impossible! If we knew the amount of error we had made, we could adjust our estimate
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by that amount and then have no error at all. The best we can do is discover how much
error is inherent in repeated use of the procedure, as opposed to how much error we made
with our current estimate. Therefore, we are concerned about the quality of the ensemble
of answers produced from the procedure, not about the quality of a particular answer.

This is a critical point with regard to actuarial practice. What is important is that an
appropriate procedure be used, with everyone understanding that even the best procedure
can lead to a poor result once the random future outcome has been revealed. This point
is stated nicely in a Society of Actuaries principles draft [22, pp. 779–780] regarding the
level of adequacy of a provision for a portfolio of life insurance risk obligations (i.e. the
probability that the company will have enough money to meet its contractual obligations):

The indicated level of adequacy is prospective, but the actuarial model is generally vali-
dated against past experience. It is incorrect to conclude on the basis of subsequent
experience that the actuarial assumptions were inappropriate or that the indicated level
of adequacy was overstated or understated.

When constructing models, there are several types of error. Some, such as model error
(choosing the wrong model) and sampling frame error (trying to draw inferences about a
population that differs from the one sampled), are not covered here. An example of model
error is selecting a Pareto distribution when the true distribution is, or is close to, Weibull.
An example of sampling frame error is sampling claims from insurance policies that were
sold by independent agents to price policies that are to be sold over the internet.

The type of error that we can measure is that resulting from using a sample from the
population to make inferences about the entire population. Errors occur when the items
sampled do not represent the population. As noted earlier, we cannot know if the particular
items sampled today do or do not represent the population. We can, however, estimate the
extent to which estimators are affected by the possibility of a nonrepresentative sample.

The approach taken in this chapter is to consider all the samples that might be taken
from the population. Each such sample leads to an estimated quantity (e.g. a probability, a
parameter value, or a moment). We do not expect the estimated quantities to always match
the true value. For a sensible estimation procedure, we do expect that for some samples
the quantity will match the true value, for many it will be close, and for only a few it will
be quite different. If we can construct a measure of how well the set of potential estimates
matches the true value, we have a handle on the quality of our estimation procedure. The
approach outlined here is often called the classical or frequentist approach to estimation.

Finally, we need a word about the difference between estimate and estimator. The
former refers to the specific value obtained when applying an estimation procedure to a set
of numbers. The latter refers to a rule or formula that produces the estimate. An estimate
is a number or function, while an estimator is a random variable or a random function.
Usually, both the words and the context will make the reference clear.

10.2.2 Measures of Quality

10.2.2.1 Introduction There are a variety of ways to measure the quality of an esti-
mator. Three of them are discussed here. Two examples are used throughout to illustrate
them.

EXAMPLE 10.1

A population contains the values 1, 3, 5, and 9. We want to estimate the population
mean by taking a sample of size 2 with replacement. �
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EXAMPLE 10.2

A population has an exponential distribution with a mean of θ. We want to estimate
the population mean by taking a sample of size 3 with replacement. �

Both examples are clearly artificial in that we know the answers prior to sampling (4.5 and
θ). However, that knowledge will make apparent the error in the procedure we select. For
practical applications, we need to be able to estimate the error when we do not know the
true value of the quantity being estimated.

10.2.2.2 Unbiasedness When constructing an estimator, it would be good if, on average,
the errors we make were to cancel each other out. More formally, let θ be the quantity we
want to estimate. Let θ̂ be the random variable that represents the estimator and let E(θ̂|θ)
be the expected value of the estimator θ̂ when θ is the true parameter value.

Definition 10.1 An estimator, θ̂, is unbiased if E(θ̂|θ) = θ for all θ. The bias is biasθ̂(θ) =

E(θ̂|θ)− θ.

The bias depends on the estimator being used and may also depend on the particular
value of θ.

EXAMPLE 10.3

For Example 10.1, determine the bias of the sample mean as an estimator of the
population mean.

The population mean is θ = 4.5. The sample mean is the average of the two
observations. In all cases, we assume that sampling is random. In other words, every
sample of size n has the same chance of being drawn. Such sampling also implies
that any member of the population has the same chance of being observed as any other
member. For this example, there are 16 equally likely ways in which the sample could
have turned out:

1,1 1,3 1,5 1,9 3,1 3,3 3,5 3,9

5,1 5,3 5,5 5,9 9,1 9,3 9,5 9,9

These samples lead to the following 16 equally likely values for the sample mean:

1 2 3 5 2 3 4 6

3 4 5 7 5 6 7 9

Combining the common values, the sample mean, usually denoted X̄ , has the
following probability distribution:

x 1 2 3 4 5 6 7 9

pX̄(x) 1/16 2/16 3/16 2/16 3/16 2/16 2/16 1/16

The expected value of the estimator is

E(X̄) = [1(1) + 2(2) + 3(3) + 4(2) + 5(3) + 6(2) + 7(2) + 9(1)]/16 = 4.5,
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and so the sample mean is an unbiased estimator of the population mean for this
example. �

EXAMPLE 10.4

For Example 10.2 determine the bias of the sample mean and the sample median as
estimators of the population mean.

The sample mean is X̄ = (X1 +X2 +X3)/3, where each Xj represents one of
the observations from the exponential population. Its expected value is

E(X̄) = E
[

1

3
(X1 +X2 +X3)

]
= 1

3 [E(X1) + E(X2) + E(X3)]

= 1
3 (θ + θ + θ) = θ

and, therefore, the sample mean is an unbiased estimator of the population mean.
Investigating the sample median is a bit more difficult. The distribution function

of the middle of three observations can be found as follows, using Y as the random
variable of interest and Xj as the random variable for the jth observation from the
population:

FY (y) = Pr(Y ≤ y) = Pr(X1, X2, X3 ≤ y) + Pr(X1, X2 ≤ y,X3 > y)

+ Pr(X1, X3 ≤ y,X2 > y) + Pr(X2, X3 ≤ y,X1 > y)

= FX(y)3 + 3FX(y)2[1− FX(y)]

= [1− e−y/θ]3 + 3[1− e−y/θ]2e−y/θ.

The first two lines follow because for the median to be less than or equal to y, either all
three observations or exactly two of them must be less than or equal to y. The density
function is

fY (y) = F ′Y (y) =
6

θ

(
e−2y/θ − e−3y/θ

)
.

The expected value of this estimator is

E(Y |θ) =

∫ ∞
0

y
6

θ

(
e−2y/θ − e−3y/θ

)
dy

=
5θ

6
.

This estimator is clearly biased,1 with

biasY (θ) = 5θ/6− θ = −θ/6.

On average, this estimator underestimates the true value. It is also easy to see that the
sample median can be turned into an unbiased estimator by multiplying it by 1.2. �

1The sample median is unlikely to be selected as an estimator of the population mean. This example studies
it for comparison purposes. Because the population median is θ ln 2, the sample median is also biased for the
population median.
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For Example 10.2, we have two estimators (the sample mean and 1.2 times the sample
median) that are both unbiased. We will need additional criteria to decide which one we
prefer.

Some estimators exhibit a small amount of bias, which vanishes as the sample size
goes to infinity.

Definition 10.2 Let θ̂n be an estimator of θ based on a sample size of n. The estimator is
asymptotically unbiased if

lim
n→∞

E(θ̂n|θ) = θ

for all θ.

EXAMPLE 10.5

Suppose that a random variable has a uniform distribution on the interval (0, θ). Consider
the estimator θ̂n = max(X1, . . . , Xn). Show that this estimator is asymptotically
unbiased.

Let Yn be the maximum from a sample of size n. Then,

FYn(y) = Pr(Yn ≤ y) = Pr(X1 ≤ y, . . . , Xn ≤ y)

= [FX(y)]n

= (y/θ)n,

fYn(y) =
nyn−1

θn
, 0 < y < θ.

The expected value is

E(Yn|θ) =

∫ θ

0

y(nyn−1θ−n) dy =
n

n+ 1
yn+1θ−n

∣∣∣∣θ
0

=
nθ

n+ 1
.

As n→∞, the limit is θ, showing that this estimator is asymptotically unbiased. �

A drawback to unbiasedness as a measure of the quality of an estimator is that an unbiased
estimator may often not be very close to the parameter, as would be the case if the estimator
has a large variance. We will now demonstrate that there is a limit to the accuracy of an
unbiased estimator in general, in the sense that there is a lower bound (called the Cramèr–
Rao lower bound) on its variance.

In what follows, suppose that X = (X1, X2, . . . , Xn) has joint pf or pdf g(x; θ),
where x = (x1, x2, . . . , xn). In the i.i.d. special case g(x; θ) =

∏n
i=1 f(xi; θ), where

f(x; θ) is the common pf or pdf of the Xis. Of central importance in many discussions of
parameter estimation is the score function, U = ∂ ln g(X; θ)/∂θ. We assume regularity
conditions on g that will be discussed in detail later, but at this point we assume that g is
twice differentiable with respect to θ and that the order of differentiation and expectation
may be interchanged. In particular, this excludes situations in which an end point of the
distribution depends on θ.

EXAMPLE 10.6

Determine the score function for the i.i.d. exponential case.
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Let f(x; θ) = θ−1e−x/θ. Then,

g(x; θ) =

n∏
i=1

f(xi; θ) = θ−n exp

(
−

n∑
i=1

xi/θ

)
,

and thus,

U =
∂

∂θ

(
−n ln θ − 1

θ

n∑
i=1

Xi

)
= −n

θ
+

1

θ2

n∑
i=1

Xi.

�

As is clear from the above example, U is a random function of θ (i.e. U is a random
variable and a function of θ).

In the i.i.d. special case, let Wi = ∂ ln f(xi; θ)/∂θ for i = 1, 2, . . . , n, implying that
W1,W2, . . . ,Wn are i.i.d. Then, U =

∑n
i=1Wi.

We now turn to the evaluation of the mean of the score function. In the discrete case
(the continuous case is similar),

E(U) =
∑
all x

[
∂

∂θ
ln g(x; θ)

]
g(x; θ)

=
∑
all x

∂
∂θg(x; θ)

g(x; θ)
g(x; θ)

=
∑
all x

∂

∂θ
g(x; θ)

=
∂

∂θ

∑
all x

g(x; θ)

=
∂

∂θ
1 = 0.

The last step follows because the sum of the probabilities over all possible values must
be 1.

Also,

∂2

∂θ2
ln g(x; θ) =

∂

∂θ

[
∂

∂θ
ln g(x; θ)

]
=

∂

∂θ

[
∂
∂θg(x; θ)

g(x; θ)

]
,

and so, by the quotient rule for differentiation,

∂2

∂θ2
ln g(x; θ) =

∂2

∂θ2 g(x; θ)

g(x; θ)
−

[
∂
∂θg(x; θ)

g(x; θ)

]2

=
∂2

∂θ2 g(x; θ)

g(x; θ)
−
[
∂

∂θ
ln g(x; θ)

]2

.
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Taking expectations yields

E
[
∂2

∂θ2
ln g(X; θ)

]
= E

[
∂2

∂θ2 g(X; θ)

g(X; θ)

]
− E(U2)

=
∑
all x

∂2

∂θ2 g(x; θ)

g(x; θ)
g(x; θ)− E(U2)

=
∑
all x

∂2

∂θ2
g(x; θ)− E(U2)

=
∂2

∂θ2

[∑
all x

g(x; θ)

]
− E(U2).

The first term is on the right-hand side is zero and therefore

E(U2) = −E
[
∂2

∂θ2
ln g(X; θ)

]
.

Alternatively, using the definition of U , we have

E(U2) = E

{[
∂

∂θ
ln g(X; θ)

]2
}
.

Recall that E(U) = 0. Then,

Var(U) = E(U2) = −E
[
∂2

∂θ2
ln g(X; θ)

]
= E

{[
∂

∂θ
ln g(X; θ)

]2
}
.

Before proceeding, we digress to note that, for any two random variables Z1 and Z2,

Cov(Z1, Z2) ≤
√

Var(Z1)
√

Var(Z2).

To see that this is true, let σ2
1 = Var(Z1), σ2

2 = Var(Z2), σ12 = Cov(Z1, Z2), and
ρ = σ12/(σ1σ2). Then,

0 ≤ Var
(
Z1

σ1
− ρZ2

σ2

)
=

1

σ2
1

Var(Z1) +

(
ρ

σ2

)2

Var(Z2)− 2ρ

σ1σ2
Cov(Z1, Z2)

= 1 + ρ2 − 2ρ2 = 1− ρ2.

Note that this development also proves that −1 ≤ ρ ≤ 1.
Now let T = T (X) be an unbiased estimator of θ. Then, by the definition of unbi-

asedness,
θ = E(T ) =

∑
all x

T (x)g(x; θ)
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and differentiating with respect to θ yields (recalling our assumption that the order of
differentiation and summation/integration may be interchanged)

1 =
∑
all x

T (x)
∂

∂θ
g(x; θ)

=
∑
all x

T (x)

[
∂

∂θ
ln g(x; θ)

]
g(x; θ)

= E(TU).

Then,

Cov(T,U) = E(TU)− E(T )E(U) = 1− (θ)(0) = 1.

We next have

1 = Cov(T,U) ≤
√

Var(T )
√

Var(U).

This implies that

Var(T ) ≥ 1

Var(U)
=

1

−E
[
∂2

∂θ2 ln g(X; θ)
] =

1

E
{[

∂
∂θ ln g(X; θ)

]2} . (10.1)

In the i.i.d. case, Var(U) =
∑n
i=1 Var(Wi) = nVar(W ), where W = ∂

∂θ ln f(X; θ)
and X is a generic version of the Xis. Then, (10.1) becomes

Var(T ) ≥ 1

Var(U)
=

1

−nE
[
∂2

∂θ2 ln f(X; θ)
] =

1

nE
{[

∂
∂θ ln f(X; θ)

]2} . (10.2)

Generally, the version using second partial derivatives (rather than the square of the
first derivative) is easier to calculate.

The lower bounds (10.1) and (10.2) are often referred to as Cramèr–Rao lower
bounds for the variance of unbiased estimators. This is extremely valuable for maximum
likelihood and other estimation procedures. The denominators in each case are referred to
as the Fisher or expected information.

EXAMPLE 10.7

Determine the Cramèr–Rao lower bound for an unbiased estimator of the sample mean
from a population with an exponential distribution. Use both formulas from (10.2).
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For the exponential distribution,

f(X; θ) = θ−1e−X/θ,

ln f(X : θ) = − ln θ −X/θ,
∂

∂θ
ln f(X : θ) = −θ−1 +Xθ−2,

∂2

∂θ2
ln f(X : θ) = θ−2 − 2Xθ−3,

E
[
∂2

∂θ2
ln f(X; θ)

]
= E

(
θ−2 − 2Xθ−3

)
= θ−2 − 2θ−2 = −θ−2,

E

{[
∂

∂θ
ln f(X; θ)

]2
}

= E
[(
−θ−1 +Xθ−2

)2]
= E

(
θ−2 − 2Xθ−3 +X2θ−4

)
= θ−2 − 2θ−2 + 2θ−2 = θ−2.

The lower bound is then 1/(nθ−2) = θ2/n. �

10.2.2.3 Consistency Another desirable property of an estimator is that it works well
for extremely large samples. Slightly more formally, as the sample size goes to infinity,
the probability that the estimator is in error by more than a small amount goes to zero. A
formal definition follows.

Definition 10.3 An estimator is consistent (often called, in this context, weakly consistent)
if, for all δ > 0 and any θ,

lim
n→∞

Pr(|θ̂n − θ| > δ) = 0.

A sufficient (although not necessary) condition for weak consistency is that the esti-
mator be asymptotically unbiased and Var(θ̂n) → 0 [equivalently, from (10.3), the mean
squared error goes to zero as n→∞].

EXAMPLE 10.8

Prove that, if the variance of a random variable is finite, the sample mean is a consistent
estimator of the population mean.

From Exercise 10.2, the sample mean is unbiased. In addition,

Var(X̄) = Var

 1

n

n∑
j=1

Xj


=

1

n2

n∑
j=1

Var(Xj)

=
Var(X)

n
→ 0.

The second step follows from assuming that the observations are independent. �
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EXAMPLE 10.9

Show that the maximum observation from a uniform distribution on the interval (0, θ)
is a consistent estimator of θ.

From Example 10.5, the maximum is asymptotically unbiased. The second moment
is

E(Y 2
n ) =

∫ θ

0

y2(nyn−1θ−n) dy =
n

n+ 2
yn+2θ−n

∣∣∣∣θ
0

=
nθ2

n+ 2
,

and then

Var(Yn) =
nθ2

n+ 2
−
(

nθ

n+ 1

)2

=
nθ2

(n+ 2)(n+ 1)2
→ 0.

�

10.2.2.4 Mean Squared Error While consistency is nice, most estimators have this
property. What would be truly impressive is an estimator that is not only correct on average
but comes very close most of the time and, in particular, comes closer than rival estima-
tors. One measure for a finite sample is motivated by the definition of consistency. The
quality of an estimator could be measured by the probability that it gets within δ of the
true value – that is, by measuring Pr(|θ̂n − θ| < δ). But the choice of δ is arbitrary, and
we prefer measures that cannot be altered to suit the investigator’s whim. Then we might
consider E(|θ̂n − θ|), the average absolute error. But we know that working with abso-
lute values often presents unpleasant mathematical challenges, and so the following has
become widely accepted as a measure of accuracy.

Definition 10.4 The mean squared error (MSE) of an estimator is

MSEθ̂(θ) = E[(θ̂ − θ)2|θ].

Note that the MSE is a function of the true value of the parameter. An estimator may
perform extremely well for some values of the parameter but poorly for others.

EXAMPLE 10.10

Consider the estimator θ̂ = 5 of an unknown parameter θ. The MSE is (5 − θ)2,
which is very small when θ is near 5 but becomes poor for other values. Of course,
this estimate is both biased and inconsistent unless θ is exactly equal to 5. �

A result that follows directly from the various definitions is

MSEθ̂(θ) = E{[θ̂ − E(θ̂|θ) + E(θ̂|θ)− θ]2|θ} = Var(θ̂|θ) + [biasθ̂(θ)]
2. (10.3)

If we restrict attention to only unbiased estimators, the best such estimator could be
defined as follows.

Definition 10.5 An estimator θ̂ is called a uniformly minimum variance unbiased esti-
mator (UMVUE) if it is unbiased and, for any true value of θ, there is no other unbiased
estimator that has a smaller variance.
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Because we are looking only at unbiased estimators, it would have been equally effec-
tive to formulate the definition in terms of MSE. We could also generalize the definition
by looking for estimators that are uniformly best with regard to MSE, but the previous
example indicates why that is not feasible. There are some results that can often assist with
the determination of UMVUEs (e.g. Hogg et al. [10, ch. 7]). However, such estimators are
often difficult to determine. Nevertheless, MSE is still a useful criterion for comparing two
alternative estimators.

EXAMPLE 10.11

For Example 10.2, compare the MSEs of the sample mean and 1.2 times the sample
median. Demonstrate that for the exponential distribution, the sample mean is a
UMVUE.

The sample mean has variance

Var(X)

3
=
θ2

3
.

When multiplied by 1.2, the sample median has second moment

E[(1.2Y )2] = 1.44

∫ ∞
0

y2 6

θ

(
e−2y/θ − e−3y/θ

)
dy

= 1.44
6

θ

[
y2

(
−θ
2
e−2y/θ +

θ

3
e−3y/θ

)
− 2y

(
θ2

4
e−2y/θ − θ2

9
e−3y/θ

)
+2

(
−θ3

8
e−2y/θ +

θ3

27
e−3y/θ

)]∣∣∣∣∞
0

=
8.64

θ

(
2θ3

8
− 2θ3

27

)
=

38θ2

25

for a variance of
38θ2

25
− θ2 =

13θ2

25
>
θ2

3
.

The sample mean has the smaller MSE regardless of the true value of θ. Therefore,
for this problem, it is a superior estimator of θ.

From Example 10.7, we see that the minimum possible variance for an unbiased
estimator is, for a sample of size 3, θ2/3. This matches the variance of the sample
mean and therefore no other unbiased estimator can have a smaller variance. Hence
the sample mean is a UMVUE. �

EXAMPLE 10.12

For the uniform distribution on the interval (0, θ), compare the MSE of the estimators
2X̄ and [(n+1)/n] max(X1, . . . , Xn). Also evaluate the MSE of max(X1, . . . , Xn).

The first two estimators are unbiased, so it is sufficient to compare their variances.
For twice the sample mean,

Var(2X̄) =
4

n
Var(X) =

4θ2

12n
=
θ2

3n
.
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For the adjusted maximum, the second moment is

E

[(
n+ 1

n
Yn

)2
]

=
(n+ 1)2

n2

nθ2

n+ 2
=

(n+ 1)2θ2

(n+ 2)n

for a variance of
(n+ 1)2θ2

(n+ 2)n
− θ2 =

θ2

n(n+ 2)
.

Except for the case n = 1 (in which the two estimators are identical), the one based
on the maximum has the smaller MSE. The third estimator is biased. The MSE of the
third estimator is

nθ2

(n+ 2)(n+ 1)2
+

(
nθ

n+ 1
− θ
)2

=
2θ2

(n+ 1)(n+ 2)
,

which is also larger than that for the adjusted maximum. �

For this example, the regularity conditions underlying the derivation of the Cramèr–Rao
lower bound do not hold and so (10.2) cannot be used to set a minimum possible value.

10.2.3 Exercises

10.1 For Example 10.1, show that the mean of three observations drawn without replace-
ment is an unbiased estimator of the population mean, while the median of three observa-
tions drawn without replacement is a biased estimator of the population mean.

10.2 Prove that, for random samples, the sample mean is always an unbiased estimator of
the population mean.

10.3 Let X have the uniform distribution over the range (θ − 2, θ + 2). That is, fX(x) =
0.25, θ − 2 < x < θ + 2. Show that the median from a sample of size 3 is an unbiased
estimator of θ.

10.4 Explain why the sample mean may not be a consistent estimator of the population
mean for a Pareto distribution.

10.5 For the sample of size 3 in Exercise 10.3, compare the MSE of the sample mean and
median as estimates of θ.

10.6 (*) You are given two independent estimators of an unknown quantity θ. For estimator
A, E(θ̂A) = 1,000 and Var(θ̂A) = 160,000, while for estimator B, E(θ̂B) = 1,200 and
Var(θ̂B) = 40,000. EstimatorC is a weighted average, θ̂C = wθ̂A+(1−w)θ̂B . Determine
the value of w that minimizes Var(θ̂C).

10.7 (*) A population of losses has a Pareto distribution (see Appendix A) with θ = 6,000
and α unknown. Simulation of the results from maximum likelihood estimation based on
samples of size 10 has indicated that E(α̂) = 2.2 and MSE(α̂) = 1. Determine Var(α̂) if
it is known that α = 2.
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10.8 (*) Two instruments are available for measuring a particular nonzero distance. The
random variable X represents a measurement with the first instrument and the random
variable Y one with the second instrument. Assume that X and Y are independent with
E(X) = 0.8m, E(Y ) = m, Var(X) = m2, and Var(Y ) = 1.5m2, where m is the true
distance. Consider estimators of m that are of the form Z = αX + βY . Determine the
values of α and β that make Z a UMVUE within the class of estimators of this form.

10.9 A population contains six members, with values 1, 1, 2, 3, 5, and 10. A random
sample of size 3 is drawn without replacement. In each case, the objective is to estimate
the population mean. Note: The use of a spreadsheet with an optimization routine may be
the best way to solve this problem.

(a) Determine the bias, variance, and MSE of the sample mean.
(b) Determine the bias, variance, and MSE of the sample median.
(c) Determine the bias, variance, and MSE of the sample midrange (the average of

the largest and smallest observations).
(d) Consider an arbitrary estimator of the form aX(1) +bX(2) +cX(3), whereX(1) ≤

X(2) ≤ X(3) are the sample order statistics.
i. Determine a restriction on the values of a, b, and c that will assure that

the estimator is unbiased.
ii. Determine the values of a, b, and c that will produce the unbiased esti-

mator with the smallest variance.
iii. Determine the values of a, b, and c that will produce the (possibly biased)

estimator with the smallest MSE.

10.10 (*) Two different estimators, θ̂1 and θ̂2, are being considered. To test their perfor-
mance, 75 trials have been simulated, each with the true value set at θ = 2. The following
totals have been obtained:

75∑
j=1

θ̂1j = 165,

75∑
j=1

θ̂2
1j = 375,

75∑
j=1

θ̂2j = 147,

75∑
j=1

θ̂2
2j = 312,

where θ̂ij is the estimate based on the jth simulation using estimator θ̂i. Estimate the MSE
for each estimator and determine the relative efficiency (the ratio of the MSEs).

10.11 Consider an i.i.d. random sample X1, X2, . . . , Xn from the distribution with cdf
F (x) = 1− (θ/x)3, for x > θ and zero otherwise.

(a) Let θ̂1 = min{X1, X2, . . . , Xn} be an estimator of θ. Demonstrate that

E(θ̂1) =
3n

3n− 1
θ.

(b) Determine the mean squared error of θ̂1, and demonstrate that it may be expressed
in the form θ2/kn, where kn is a positive integer. Also show that θ̂1 is a consistent
estimator of θ.

(c) Let θ̂2 = 3n−1
3n θ̂1. Prove that θ̂2 is an unbiased and consistent estimator of θ.
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(d) Let θ̂3 = (2/3)X̄ , where X̄ = (X1+X2+· · ·+Xn)/n. Derive the expected value
and mean squared error of θ̂3, and explain why θ̂2 would generally be preferred to
both θ̂1 and θ̂3 as an estimator of θ.

10.3 Interval Estimation

All of the estimators discussed to this point have been point estimators. That is, the
estimation process produces a single value that represents our best attempt to determine
the value of the unknown population quantity. While that value may be a good one, we do
not expect it to match the true value exactly. A more useful statement is often provided by
an interval estimator. Instead of a single value, the result of the estimation process is a
range of possible numbers, any of which is likely to be the true value. A specific type of
interval estimator is the confidence interval.

Definition 10.6 A 100(1−α)% confidence interval for a parameter θ is a pair of random
values, L and U , computed from a random sample such that Pr(L ≤ θ ≤ U) ≥ 1− α for
all θ.

Note that this definition does not uniquely specify the interval. Because the definition
is a probability statement and must hold for all θ, it says nothing about whether or not a
particular interval encloses the true value of θ from a particular population. Instead, the
level of confidence, 1 − α, is a property of the method used to obtain L and U and not
of the particular values obtained. The proper interpretation is that, if we use a particular
interval estimator over and over on a variety of samples, at least 100(1− α)% of the time
our interval will enclose the true value. Keep in mind that it is the interval end points that
are random.

The construction of confidence intervals is usually very difficult. For example, we
know that, if a population has a normal distribution with unknown mean and variance, a
100(1− α)% confidence interval for the mean uses

L = X̄ − tα/2,n−1s/
√
n, U = X̄ + tα/2,n−1s/

√
n, (10.4)

where s =
√∑n

j=1(Xj − X̄)2/(n− 1) and tα/2,b is the 100(1−α/2)th percentile of the
t distribution with b degrees of freedom. But it takes a great deal of effort to verify that
(10.4) is correct (see, e.g. Hogg et al. [10, p. 186]).

However, there is a method for constructing approximate confidence intervals that
is often accessible. Suppose that we have a point estimator θ̂ of parameter θ such that
E(θ̂)

.
= θ, Var(θ̂)

.
= v(θ), and θ̂ has approximately a normal distribution. Theorem 11.4

shows that these three properties are often the case. With all these approximations, we
have that, approximately,

1− α .
= Pr

(
−zα/2 ≤

θ̂ − θ√
v(θ)

≤ zα/2

)
, (10.5)

where zα/2 is the 100(1 − α/2)th percentile of the standard normal distribution. Solving
for θ produces the desired interval. It is sometimes difficult to obtain the solution (due to
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the appearance of θ in the denominator) and so, if necessary, replace v(θ) in (10.5) with
v(θ̂) to obtain a further approximation:

1− α .
= Pr

(
θ̂ − zα/2

√
v(θ̂) ≤ θ ≤ θ̂ + zα/2

√
v(θ̂)

)
. (10.6)

EXAMPLE 10.13

Use (10.6) to construct an approximate 95% confidence interval for the mean of a
normal population with unknown variance.

Use θ̂ = X̄ and then note that E(θ̂) = θ, Var(θ̂) = σ2/n, and θ̂ does have
a normal distribution. The confidence interval is then X̄ ± 1.96s/

√
n. Because

t0.025,n−1 > 1.96, this approximate interval must be narrower than the exact interval
given by (10.4), which implies that our level of confidence is something less than 95%.

�

EXAMPLE 10.14

Use (10.5) and (10.6) to construct approximate 95% confidence intervals for the mean
of a Poisson distribution. Obtain intervals for the particular case where n = 25 and
x̄ = 0.12.

Here, θ = λ, the mean of the Poisson distribution. Let θ̂ = X̄ , the sample mean.
For the Poisson distribution, E(θ̂) = E(X) = θ and v(θ) = Var(X̄) = Var(X)/n =
θ/n. For the first interval,

0.95
.
= Pr

(
−1.96 ≤ X̄ − θ√

θ/n
≤ 1.96

)

is true if and only if

|X̄ − θ| ≤ 1.96

√
θ

n
,

which is equivalent to

(X̄ − θ)2 ≤ 3.8416θ

n
or

θ2 − θ
(

2X̄ +
3.8416

n

)
+ X̄2 ≤ 0.

Solving the quadratic produces the interval

X̄ +
1.9208

n
± 1

2

√
15.3664X̄ + 3.84162/n

n
,

and for this problem the interval is 0.197± 0.156.
For the second approximation, the interval is X̄±1.96

√
X̄/n, and for the example,

it is 0.12± 0.136. This interval extends below zero (which is not possible for the true
value of θ) because (10.6) is too crude an approximation in this case. �
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10.3.1 Exercises

10.12 Let x1, . . . , xn be a random sample from a population with pdf f(x) = θ−1e−x/θ,
x > 0. This exponential distribution has a mean of θ and a variance of θ2. Consider the
sample mean, X̄ , as an estimator of θ. It turns out that X̄/θ has a gamma distribution with
α = n and θ = 1/n, where in the second expression the “θ” on the left is the parameter
of the gamma distribution. For a sample of size 50 and a sample mean of 275, develop
95% confidence intervals by each of the following methods. In each case, if the formula
requires the true value of θ, substitute the estimated value.

(a) Use the gamma distribution to determine an exact interval.
(b) Use a normal approximation, estimating the variance prior to solving the inequal-

ities as in (10.6).
(c) Use a normal approximation, estimating θ after solving the inequalities as in

Example 10.14.

10.13 (*) A sample of 2,000 policies had 1,600 with no claims and 400 with one or
more claims. Using the normal approximation, determine the symmetric 95% confidence
interval for the probability that a single policy has one or more claims.

10.4 The Construction of Parametric Estimators

In previous sections, we developed methods for assessing the quality of an estimator. In
all the examples, the estimators being evaluated were arbitrary, though reasonable. This
section reviews two methods for constructing estimators. A third is covered in Chapter
11. In this section, we assume that n independent observations from the same parametric
distribution have been collected. There are two, essentially incompatible, approaches to
estimating parameters. This section and Chapter 11 cover the frequentist approach to esti-
mation introduced in Section 10.2. An alternative estimation approach, known as Bayesian
estimation, is covered in Chapter 13.

The methods introduced in Section 10.4.1 are relatively easy to implement but tend to
give poor results. Chapter 11 covers maximum likelihood estimation. This method is more
difficult to use but has superior statistical properties and is considerably more flexible.

10.4.1 The Method of Moments and Percentile Matching

Let the distribution function for an individual observation be given by

F (x|θ), θT = (θ1, θ2, . . . , θp),

where θT is the transpose of θ. That is, θ is a column vector containing the p parameters to
be estimated. Furthermore, let µ′k(θ) = E(Xk|θ) be the kth raw moment, and let πg(θ) be
the 100gth percentile of the random variable. That is, F [πg(θ)|θ] = g. If the distribution
function is continuous, there will be at least one solution to that equation.

For a sample of n independent observations from this random variable, let µ̂′k =
1
n

∑n
j=1 x

k
j be the empirical estimate of the kth moment and let π̂g be the empirical

estimate of the 100gth percentile.



THE CONSTRUCTION OF PARAMETRIC ESTIMATORS 219

Definition 10.7 A method of moments estimate of θ is any solution of the p equations

µ′k(θ) = µ̂′k, k = 1, 2, . . . , p.

The motivation for this estimator is that it produces a model that has the same first p raw
moments as the data (as represented by the empirical distribution). The traditional defini-
tion of the method of moments uses positive integers for the moments. Arbitrary negative
or fractional moments could also be used. In particular, when estimating parameters for
inverse distributions, the matching of negative moments may be a superior approach.2

EXAMPLE 10.15

Use the method of moments to estimate parameters for the exponential, gamma, and
Pareto distributions for Data Set B.

The first two sample moments are

µ̂′1 = 1
20 (27 + · · ·+ 15,743) = 1,424.4,

µ̂′2 = 1
20 (272 + · · ·+ 15,7432) = 13,238,441.9.

For the exponential distribution, the equation is

θ = 1,424.4,

with the obvious solution θ̂ = 1,424.4.
For the gamma distribution, the two equations are

E(X) = αθ = 1,424.4,

E(X2) = α(α+ 1)θ2 = 13,238,441.9.

Dividing the second equation by the square of the first equation yields

α+ 1

α
= 6.52489, 1 = 5.52489α,

and so α̂ = 1/5.52489 = 0.18100 and θ̂ = 1,424.4/0.18100 = 7,869.61.
For the Pareto distribution, the two equations are

E(X) =
θ

α− 1
= 1,424.4,

E(X2) =
2θ2

(α− 1)(α− 2)
= 13,238,441.9.

Dividing the second equation by the square of the first equation yields

2(α− 1)

α− 2
= 6.52489,

2One advantage is that, with appropriate moments selected, the equations may have a solution within the range
of allowable parameter values.
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with a solution of α̂ = 2.442 and then θ̂ = 1,424.4(1.442) = 2,053.985. �

There is no guarantee that the equations will have a solution or, if there is a solution, that
it will be unique.

Definition 10.8 A percentile-matching estimate of θ is any solution of the p equations

πgk(θ) = π̂gk , k = 1, 2, . . . , p,

where g1, g2, . . . , gp are p arbitrarily chosen percentiles. From the definition of percentile,
the equations can also be written as

F (π̂gk |θ) = gk, k = 1, 2, . . . , p.

The motivation for this estimator is that it produces a model with p percentiles that
match the data (as represented by the empirical distribution). As with the method of
moments, there is no guarantee that the equations will have a solution or, if there is a
solution, that it will be unique. One problem with this definition is that percentiles for
discrete random variables (such as the empirical distribution) are not always well defined.
For example, Data Set B has 20 observations. Any number between 384 and 457 has 10
observations below and 10 above, and so could serve as the median. The convention is
to use the midpoint. However, for other percentiles, there is no “official” interpolation
scheme.3 The following definition is used here.

Definition 10.9 The smoothed empirical estimate of a percentile is calculated as

π̂g = (1− h)x(j) + hx(j+1),

where
j = b(n+ 1)gc and h = (n+ 1)g − j.

Here, b·c indicates the greatest integer function and x(1) ≤ x(2) ≤ · · · ≤ x(n) are the
order statistics from the sample.

Unless there are two or more data points with the same value, no two percentiles
will have the same value. One feature of this definition is that π̂g cannot be obtained for
g < 1/(n + 1) or g > n/(n + 1). This seems reasonable, as we should not expect to be
able to infer the value of very large or small percentiles from small samples. We use the
smoothed version whenever an empirical percentile estimate is needed.

EXAMPLE 10.16

Use percentile matching to estimate parameters for the exponential and Pareto distri-
butions for Data Set B.

For the exponential distribution, select the 50th percentile. The empirical esti-
mate is the traditional median of π̂0.5 = (384 + 457)/2 = 420.5 and the equation to

3Hyndman and Fan [11] present nine different methods. They recommend a slight modification of the one
presented here, using j = bg(n+ 1

3
) + 1

3
c and h = g(n+ 1

3
) + 1

3
− j.
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solve is

0.5 = F (420.5|θ) = 1− e−420.5/θ,

ln 0.5 =
−420.5

θ
,

θ̂ =
−420.5

ln 0.5
= 606.65.

For the Pareto distribution, select the 30th and 80th percentiles. The smoothed
empirical estimates are found as follows:

30th: j = b21(0.3)c = b6.3c = 6, h = 6.3− 6 = 0.3,

π̂0.3 = 0.7(161) + 0.3(243) = 185.6,

80th: j = b21(0.8)c = b16.8c = 16, h = 16.8− 16 = 0.8,

π̂0.8 = 0.2(1,193) + 0.8(1,340) = 1,310.6.

The equations to solve are

0.3 = F (185.6) = 1−
(

θ

185.6 + θ

)α
,

0.8 = F (1,310.6) = 1−
(

θ

1,310.6 + θ

)α
,

ln 0.7 = −0.356675 = α ln

(
θ

185.6 + θ

)
,

ln 0.2 = −1.609438 = α ln

(
θ

1,310.6 + θ

)
,

−1.609438

−0.356675
= 4.512338 =

ln

(
θ

1,310.6 + θ

)
ln

(
θ

185.6 + θ

) .

Numerical methods are needed to solve this equation for θ̂ = 715.03. Then, from the
first equation,

0.3 = 1−
(

715.03

185.6 + 715.03

)α
,

which yields α̂ = 1.54559. �

The estimates are much different from those obtained in Example 10.15, which is one
indication that these methods may not be particularly reliable.

10.4.2 Exercises

10.14 Determine the method of moments estimate for a lognormal model for Data Set B.

10.15 (*) The 20th and 80th percentiles from a sample are 5 and 12, respectively. Using
the percentile-matching method, estimate S(8) assuming that the population has a Weibull
distribution.
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10.16 (*) From a sample, you are given that the mean is 35,000, the standard deviation
is 75,000, the median is 10,000, and the 90th percentile is 100,000. Using the percentile-
matching method, estimate the parameters of a Weibull distribution.

10.17 (*) A sample of size 5 has produced the values 4, 5, 21, 99, and 421. You fit a
Pareto distribution using the method of moments. Determine the 95th percentile of the
fitted distribution.

10.18 (*) In year 1 there are 100 claims with an average size of 10,000 and in year 2 there
are 200 claims with an average size of 12,500. Inflation increases the size of all claims by
10% per year. A Pareto distribution with α = 3 and θ unknown is used to model the claim
size distribution. Estimate θ for year 3 using the method of moments.

10.19 (*) From a random sample, the 20th percentile is 18.25 and the 80th percentile is
35.8. Estimate the parameters of a lognormal distribution using percentile matching and
then use these estimates to estimate the probability of observing a value in excess of 30.

10.20 (*) A claim process is a mixture of two random variables A and B, where A has
an exponential distribution with a mean of 1 and B has an exponential distribution with a
mean of 10. A weight of p is assigned to distribution A and 1 − p to distribution B. The
standard deviation of the mixture is 2. Estimate p by the method of moments.

10.21 (*) A random sample of 20 observations has been ordered as follows:

12 16 20 23 26 28 30 32 33 35

36 38 39 40 41 43 45 47 50 57

Determine the 60th sample percentile using the smoothed empirical estimate.

10.22 (*) The following 20 wind losses (in millions of dollars) were recorded in one year:

1 1 1 1 1 2 2 3 3 4

6 6 8 10 13 14 15 18 22 25

Determine the sample 75th percentile using the smoothed empirical estimate.

10.23 (*) The observations 1,000, 850, 750, 1,100, 1,250, and 900 were obtained as a
random sample from a gamma distribution with unknown parameters α and θ. Estimate
these parameters by the method of moments.

10.24 (*) A random sample of claims has been drawn from a loglogistic distribution. In
the sample, 80% of the claims exceed 100 and 20% exceed 400. Estimate the loglogistic
parameters by percentile matching.

10.25 (*) Let x1, . . . , xn be a random sample from a population with cdf F (x) = xp, 0 <
x < 1. Determine the method of moments estimate of p.
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Table 10.5 The data for Exercise 10.30.

Number of claims Number of policies

0 9,048

1 905

2 45

3 2

4+ 0

10.26 (*) A random sample of 10 claims obtained from a gamma distribution is given as
follows:

1,500 6,000 3,500 3,800 1,800 5,500 4,800 4,200 3,900 3,000

Estimate α and θ by the method of moments.

10.27 (*) A random sample of five claims from a lognormal distribution is given as follows:

500 1,000 1,500 2,500 4,500

Estimate µ and σ by the method of moments. Estimate the probability that a loss will
exceed 4,500.

10.28 (*) The random variable X has pdf f(x) = β−2x exp(−0.5x2/β2), x, β > 0. For
this random variable, E(X) = (β/2)

√
2π and Var(X) = 2β2− πβ2/2. You are given the

following five observations:

4.9 1.8 3.4 6.9 4.0

Determine the method of moments estimate of β.

10.29 The random variable X has pdf f(x) = αλα(λ+x)−α−1, x, α, λ > 0. It is known
that λ = 1,000. You are given the following five observations:

43 145 233 396 775

Determine the method of moments estimate of α.

10.30 Use the data in Table 10.5 to determine the method of moments estimate of the
parameters of the negative binomial model.

10.31 Use the data in Table 10.6 to determine the method of moments estimate of the
parameters of the negative binomial model.

10.32 (*) Losses have a Burr distribution with α = 2. A random sample of 15 losses is
195, 255, 270, 280, 350, 360, 365, 380, 415, 450, 490, 550, 575, 590, and 615. Use the
smoothed empirical estimates of the 30th and 65th percentiles and percentile matching to
estimate the parameters γ and θ.
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Table 10.6 The data for Exercise 10.31.

Number of claims Number of policies

0 861

1 121

2 13

3 3

4 1

5 0

6 1

7+ 0

10.33 (*) Losses have a Weibull distribution. A random sample of 16 losses is 54, 70,
75, 81, 84, 88, 97, 105, 109, 114, 122, 125, 128, 139, 146, and 153. Use the smoothed
empirical estimates of the 20th and 70th percentiles and percentile matching to estimate
the parameters τ and θ.

10.34 (*) Losses follow a distribution with pdf f(x) = θ−1 exp[−(x− δ)/θ], x > δ. The
sample mean is 300 and the sample median is 240. Estimate δ and θ by matching these
two quantities.

10.5 Tests of Hypotheses

Hypothesis testing is covered in detail in most mathematical statistics texts. This review
is fairly straightforward and does not address philosophical issues or consider alternative
approaches. A hypothesis test begins with two hypotheses, one called the null and one
called the alternative. The traditional notation is H0 for the null hypothesis and H1 for
the alternative hypothesis. The two hypotheses are not treated symmetrically. Reversing
them may alter the results. To illustrate this process, a simple example is used.

EXAMPLE 10.17

Your company has been basing its premiums on an assumption that the average claim
is 1,200. You want to raise the premium, and a regulator has insisted that you provide
evidence that the average now exceeds 1,200. Let Data Set B be a sample of 20 claims.
What are the hypotheses for this problem?

Let µ be the population mean. One hypothesis (the one you claim is true) is that
µ > 1,200. Because hypothesis tests must present an either/or situation, the other
hypothesis must be µ ≤ 1,200. The only remaining task is to decide which of them
is the null hypothesis. Whenever the universe of continuous possibilities is divided
in two, there is likely to be a boundary that needs to be assigned to one hypothesis
or the other. The hypothesis that includes the boundary must be the null hypothesis.
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Therefore, the problem can be succinctly stated as:

H0 : µ ≤ 1,200,

H1 : µ > 1,200.
�

The decision is made by calculating a quantity called a test statistic. It is a function
of the observations and is treated as a random variable. That is, in designing the test
procedure, we are concerned with the samples that might have been obtained and not with
the particular sample that was obtained. The test specification is completed by constructing
a rejection region. It is a subset of the possible values of the test statistic. If the value of
the test statistic for the observed sample is in the rejection region, the null hypothesis is
rejected and the alternative hypothesis is announced as the result that is supported by the
data. Otherwise, the null hypothesis is not rejected (more on this later). The boundaries of
the rejection region (other than plus or minus infinity) are called the critical values.

EXAMPLE 10.18

(Example 10.17 continued) Complete the test using the test statistic and rejection
region that is promoted in most statistics books. Assume that the population has a
normal distribution with standard deviation 3,435.

The traditional test statistic for this problem (normal population and standard
deviation known) is

z =
x̄− µ0

σ/
√
n

=
1,424.4− 1,200

3,435/
√

20
= 0.292,

where µ0 is the value that separates the null and alternative hypotheses. The null
hypothesis is rejected if z > 1.645. Because 0.292 is less than 1.645, the null hypoth-
esis is not rejected. The data do not support the assertion that the average claim
exceeds 1,200. �

The test in the previous example was constructed to meet certain objectives. The first
objective is to control what is called the Type I error. It is the error made when the test
rejects the null hypothesis in a situation in which it happens to be true. In the example, the
null hypothesis can be true in more than one way. As a result, a measure of the propensity
of a test to make a Type I error must be carefully defined.

Definition 10.10 The significance level of a hypothesis test is the probability of making
a Type I error given that the null hypothesis is true. If it can be true in more than one
way, the level of significance is the maximum of such probabilities. The significance level
is usually denoted by α.

This is a conservative definition in that it looks at the worst case. It is typically a case
that is on the boundary between the two hypotheses.

EXAMPLE 10.19

Determine the level of significance for the test in Example 10.18.
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Begin by computing the probability of making a Type I error when the null
hypothesis is true with µ = 1,200. Then,

Pr(Z > 1.645|µ = 1,200) = 0.05

because the assumptions imply that Z has a standard normal distribution.
Now suppose that µ has a value below 1,200. Then,

Pr

(
X̄ − 1,200

3,435/
√

20
> 1.645

)
= Pr

(
X̄ − µ+ µ− 1,200

3,435/
√

20
> 1.645

)
= Pr

(
X̄ − µ

3,435/
√

20
> 1.645− µ− 1,200

3,435/
√

20

)
.

The random variable on the left has a standard normal distribution. Because µ is
known to be less than 1,200, the right-hand side is always greater than 1.645. There-
fore the probability is less than 0.05, and so the significance level is 0.05. �

The significance level is usually set in advance and is often between 1% and 10%. The
second objective is to keep the Type II error (not rejecting the null hypothesis when the
alternative is true) probability small. Generally, attempts to reduce the probability of one
type of error increase the probability of the other. The best we can do once the significance
level has been set is to make the Type II error as small as possible, though there is no
assurance that the probability will be a small number. The best test is one that meets the
following requirement.

Definition 10.11 A hypothesis test is uniformly most powerful if no other test exists that
has the same or lower significance level and, for a particular value within the alternative
hypothesis, has a smaller probability of making a Type II error.

EXAMPLE 10.20

(Example 10.19 continued) Determine the probability of making a Type II error when
the alternative hypothesis is true with µ = 2,000.

Pr

(
X̄ − 1,200

3,435/
√

20
< 1.645|µ = 2,000

)
= Pr(X̄ − 1,200 < 1,263.51|µ = 2,000)

= Pr(X̄ < 2,463.51|µ = 2,000)

= Pr

(
X̄ − 2,000

3,435/
√

20
<

2,463.51− 2,000

3,435/
√

20
= 0.6035

)
= 0.7269.

For this value of µ, the test is not very powerful, having a more than 70% chance of
making a Type II error. Nevertheless (though this is not easy to prove), the test used is
the most powerful test for this problem. �

Because the Type II error probability can be high, it is customary to not make a strong
statement when the null hypothesis is not rejected. Rather than saying that we choose or
accept the null hypothesis, we say that we fail to reject it. That is, there was not enough
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evidence in the sample to make a strong argument in favor of the alternative hypothesis, so
we take no stand at all.

A common criticism of this approach to hypothesis testing is that the choice of the
significance level is arbitrary. In fact, by changing the significance level, any result can be
obtained.

EXAMPLE 10.21

(Example 10.20 continued) Complete the test using a significance level of α = 0.45.
Then determine the range of significance levels for which the null hypothesis is rejected
and for which it is not rejected.

Because Pr(Z > 0.1257) = 0.45, the null hypothesis is rejected when

X̄ − 1,200

3,435/
√

20
> 0.1257.

In this example, the test statistic is 0.292, which is in the rejection region, and thus
the null hypothesis is rejected. Of course, few people would place confidence in the
results of a test that was designed to make errors 45% of the time. Because Pr(Z >
0.292) = 0.3851, the null hypothesis is rejected for those who select a significance
level that is greater than 38.51% and is not rejected by those who use a significance
level that is less than 38.51%. �

Few people are willing to make errors 38.51% of the time. Announcing this figure is
more persuasive than the earlier conclusion based on a 5% significance level. When a
significance level is used, those interpreting the output are left to wonder what the outcome
would have been with other significance levels. The value of 38.51% is called a p-value.
A working definition follows.

Definition 10.12 For a hypothesis test, the p-value is the probability that the test statistic
takes on a value that is less in agreement with the null hypothesis than the value obtained
from the sample. Tests conducted at a significance level that is greater than the p-value
will lead to a rejection of the null hypothesis, while tests conducted at a significance level
that is smaller than the p-value will lead to a failure to reject the null hypothesis.

Also, because the p-value must be between 0 and 1, it is on a scale that carries some
meaning. The closer to zero the value is, the more support the data give to the alternative
hypothesis. Common practice is that values above 10% indicate that the data provide no
evidence in support of the alternative hypothesis, while values below 1% indicate strong
support for the alternative hypothesis. Values in between indicate uncertainty as to the
appropriate conclusion, and may call for more data or a more careful look at the data or the
experiment that produced it.

This approach to hypothesis testing has some consequences that can create difficulties
when answering actuarial questions. The following example illustrates these problems.
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EXAMPLE 10.22

You believe that the lognormal model is appropriate for the problem you are investi-
gating. You have collected some data and would like to test this hypothesis. What are
the null and alternative hypotheses and what will you learn after completing the test?

Methods for conducting this test are presented in Section 15.4. One hypothesis is
that the population has the lognormal distribution and the other is that it does not. The
first one is the statement of equality and so must be the null hypothesis. The problem
is that while the data can confirm that the population is not lognormal, the method
does not allow you to assert that the population is lognormal. A second problem is
that often the null hypothesis is known to be false. In this case, we know that the
population is unlikely to be exactly lognormal. If our sample size is large enough, the
hypothesis test will discover this, and it is likely that all models will be rejected. �

It is important to keep in mind that hypothesis testing was invented for situations in which
collecting data was either expensive or inconvenient. For example, in deciding if a new
drug cures a disease, it is important to confirm this fact with the smallest possible sample so
that, if the results are favorable, the drug can be approved and made available. Or, consider
testing a new crop fertilizer. Every test acre planted costs time and money. In contrast,
in many types of actuarial problems, a large amount of data is available from historical
records. In this case, unless the data follow a parametric model extremely closely, almost
any model can be rejected by using a sufficiently large set of data.

10.5.1 Exercise

10.35 (Exercise 10.12 continued) Test H0 : θ ≥ 325 versus H1 : θ < 325 using a
significance level of 5% and the sample mean as the test statistic. Also, compute the p-
value. Do this twice, using: (i) the exact distribution of the test statistic and (ii) a normal
approximation.
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CHAPTER 10 SOLUTIONS

SECTION 10.2

10.1 When three observations are taken without replacement, there are only four possible
results. They are as follows: 1,3,5; 1,3,9; 1,5,9; and 3,5,9. The four sample means are 9/3,
13/3, 15/3, and 17/3. The expected value (each has probability 1/4) is 54/12 or 4.5, which
equals the population mean. The four sample medians are 3, 3, 5, and 5. The expected value
is 4, and so the median is biased.

10.2 E(X̄) = E
[

1

n
(X1 + · · ·+Xn)

]
=

1

n
[E(X1) + · · ·+ E(Xn)]

=
1

n
(µ+ · · ·+ µ) = µ.

10.3 For a sample of size 3 from a continuous distribution, the density function of the median
is 6f(x)F (x)[1 − F (x)]. For this exercise, F (x) = (x − θ + 2)/4, θ − 2 < x < θ + 2.

Student Solutions Manual to Accompany Loss Models: From Data to Decisions, Fifth Edition.
Stuart A. Klugman, Harry H. Panjer, and Gordon E. Willmot.
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The density function for the median is

fmed(x) = 6(0.25)
x− θ + 2

4

2− x+ θ

4

and the expected value is

6

∫ θ+2

θ−2

x(x− θ + 2)(2− x+ θ)

64
dx =

6

64

∫ 4

0

(y + θ − 2)y(4− y)dy

=
6

64

∫ 4

0

−y3 + (6− θ)y2 + 4(θ − 2)ydy

=
6

64

[
−y

4

4
+

(6− θ)y3

3
+

4(θ − 2)y2

2

]∣∣∣∣4
0

=
6

64

[
−64 +

(6− θ)64

3
+ 32(θ − 2)

]
= θ,

where the first line used the substitution y = x− θ + 2.

10.4 Because the mean of a Pareto distribution does not always exist, it is not reasonable to
discuss unbiasedness or consistency. Had the problem been restricted to Pareto distributions
with α > 1, then consistency can be established. It turns out that for the sample mean to
be consistent, only the first moment needs to exist (the variance having a limit of zero is a
sufficient, but not a necessary, condition for consistency).

10.5 The mean is unbiased, so its MSE is its variance. It is

MSEmean(θ) =
Var(X)

3
=

42

12(3)
=

4

9
.

The median is also unbiased. The variance is

6

∫ θ+2

θ−2

(x− θ)2(x− θ + 2)(2− x+ θ)

64
dx =

6

64

∫ 4

0

(y − 2)2y(4− y)dy

=
6

64

∫ 4

0

−y4 + 8y3 − 20y2 + 16y dy

=
6

64

[
−45

5
+

8(4)4

4
− 20(4)3

3
+

16(4)2

2

]
= 4/5,

and so the sample mean has the smaller MSE.

10.6 We have

Var(θ̂C) = Var[wθ̂A + (1− w)θ̂B ]

= w2(160,000) + (1− w)2(40,000)

= 200,000w2 − 80,000w + 40,000.

The derivative is 400,000w − 80,000, and setting it equal to zero provides the solution,
w = 0.2.
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10.7 MSE = Var + bias2. 1 = Var + (0.2)2, Var = 0.96.

10.8 To be unbiased,

m = E(Z) = α(0.8m) + βm = (0.8α+ β)m,

and so 1 = 0.8α+ β or β = 1− 0.8α. Then

Var(Z) = α2m2 + β21.5m2 = [α2 + (1− 0.8α)21.5]m2,

which is minimized when α2 + 1.5− 2.4α+ 0.96α2 is minimized. This result occurs when
3.92α− 2.4 = 0 or α = 0.6122. Then β = 1− 0.8(0.6122) = 0.5102.

10.9 One way to solve this problem is to list the 20 possible samples of size 3 and assign
probability 1/20 to each. The population mean is (1 + 1 + 2 + 3 + 5 + 10)/6 = 11/3.

(a) The 20 sample means have an average of 11/3, and so the bias is zero. The variance
of the sample means (dividing by 20 because this is the population of sample means) is
1.9778, which is also the MSE.

(b) The 20 sample medians have an average of 2.7, and so the bias is 2.7−11/3 = −0.9667.
The variance is 1.81 and the MSE is 2.7444.
(c) The 20 sample midranges have an average of 4.15, and so the bias is 4.15 − 11/3 =
0.4833. The variance is 2.65 and the MSE is 2.8861.

(d) E(aX(1)+bX(2)+cX(3)) = 1.25a+2.7b+7.05c, where the expected values of the order
statistics can be found by averaging the 20 values from the enumerated population. To be
unbiased, the expected value must be 11/3, and so the restriction is 1.25a+ 2.7b+ 7.05c =
11/3. With this restriction, the MSE is minimized at a = 1.445337, b = 0.043733,
and c = 0.247080 with an MSE of 1.620325. With no restrictions, the minimum is at
a = 1.289870, b = 0.039029, and c = 0.220507 with an MSE of 1.446047 (and a bias of
−0.3944).

10.10 bias(θ̂1) = 165/75 − 2 = 0.2, Var(θ̂1) = 375/75 − (165/75)2 = 0.16, and
MSE(θ̂1) = 0.16 + (0.2)2 = 0.2. bias(θ̂2) = 147/75− 2 = −0.04, Var(θ̂2) = 312/75−
(147/75)2 = 0.3184, and MSE(θ̂2) = 0.3184 + (−0.04)2 = 0.32. The relative efficiency
is 0.2/0.32 = 0.625, or 0.32/0.20 = 1.6.

10.11 (a) We have the following:

Pr(θ̂1 > x) = [1− F (x)]n = (θ/x)3n, x > θ.

Thus, the pdf is

f1(x) = − d

dx
(θ/x)3n = 3nθ3nx−3n−1, x > θ
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and

E(θ̂1) =

∫ ∞
θ

nθ3nx−3ndx

= 3nθ3n

(
−x
−3n+1

3n− 1

∣∣∣∣∞
θ

)
=

3n

3n− 1
θ.

(b) We have the following:

E(θ̂2
1) =

∫ ∞
θ

3nθ3nθ3nx−3n+1dx

= 3nθ3n

(
−x
−3n+2

3n− 2

∣∣∣∣∞
θ

)
=

3n

3n− 2
θ2.

Thus,

Var(θ̂1) =

[
3n

3n− 2
−
(

3n

3n− 1

)2
]
θ2

=
3nθ2

(3n− 2)(3n− 1)2

[
(3n− 1)2 − 3n(3n− 2)

]
=

3nθ2

(3n− 2)(3n− 1)2
.

Also,

MSE(θ̂1) =
3nθ2

(3n− 2)(3n− 1)2
+

(
3nθ

3n− 1
− θ
)2

=
θ2

(3n− 2)(3n− 1)2
[3n+ (3n− 1)]

=
2θ2

(3n− 2)(3n− 1)
,

implying that kn = (3n − 2)(3n − 1)/2. It is a positive because exactly one of 3n − 2
and 3n− 1 must be even and hence divisible by 2. Another way to see this is to note that
kn =

∑3n−2
j=1 j. Because limn→∞MSE(θ̂1) = 0, θ̂1 is a consistent estimator of θ.

(c) We have E(θ̂2) = 3n− 1
3n E(θ̂1) = θ and thus θ̂2 is unbiased for θ. Also,

Var(θ̂2) =

(
3n− 1

3n

)2

Var(θ̂1)

=
(3n− 1)2

(3n)2

3nθ2

(3n− 2)(3n− 1)2

=
θ2

3n(3n− 2)
.

Because limn→∞ Var(θ̂2) = 0, and θ̂2 is unbiased, θ̂2 is a consistent estimator of θ.
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(d) From (a) with n = 1, we have E(X) = 3θ/2. Then

E(θ̂3) = (2/3)E(X̄) = (2/3)E(X) = (2/3)(3θ/2) = θ

and thus θ̂3 is an unbiased estimator of θ.
Because it is unbiased (and again using the result from part (a) with n = 1),

MSE(θ̂3) = Var(θ̂3) = (2/3)2Var(X̄)/n =
4

9

3θ2

4n
=
θ2

3n
.

Both θ̂2 and θ̂3 are unbiased. From (c), we have

Var(θ̂2) =
Var(θ̂3)

3n− 2
≤ Var(θ̂3)

with equality only when n = 1. Hence, θ̂2 is preferred to θ̂3. Because θ̂1 is biased, it is easy
to compare MSE. It is then easily shown that the MSE is smaller for θ̂2.

SECTION 10.3

10.12 (a) From the information given in the problem, we can begin with

0.95 = Pr(a ≤ X̄/θ ≤ b),

where X̄/θ is known to have a gamma distribution with α = 50 and θ = 0.02. This does
not uniquely specify the endpoints. However, if 2.5% probability is allocated to each side,
then a = 0.7422 and b = 1.2956. Inserting these values in the inequality, taking reciprocals,
and multiplying through by X̄ gives

0.95 = Pr(0.7718X̄ ≤ θ ≤ 1.3473X̄).

Inserting the sample mean gives an interval of 212.25 to 370.51.

(b) The sample mean has E(X̄) = θ and Var(X̄) = θ2/50. Then, using 2752/50 as the
approximate variance,

0.95
.
= Pr

(
−1.96 ≤ X̄ − θ

275/
√

50
≤ 1.96

)
= Pr(−76.23 ≤ X̄ − θ ≤ 76.23).

Inserting the sample mean of 275 gives the interval 275± 76.23, or 198.77 to 351.23.

(c) Leaving the θ in the variance alone,

0.95
.
= Pr

(
−1.96 ≤ X̄ − θ

θ/
√

50
≤ 1.96

)
= Pr(−0.2772θ ≤ X̄ − θ ≤ 0.2772θ)

= Pr(X̄/1.2772 ≤ θ ≤ X̄/0.7228)

for an interval of 215.31 to 380.46.

10.13 The estimated probability of one or more claims is 400/2,000 = 0.2. For this
binomial distribution, the variance is estimated as 0.2(0.8)/2,000 = 0.00008. The upper
bound is 0.2 + 1.96

√
0.00008 = 0.21753.



100 CHAPTER 10 SOLUTIONS

SECTION 10.4

10.14 The equations to solve are

exp(µ+ σ2/2) = 1,424.4,

exp(2µ+ 2σ2) = 13,238,441.9.

Taking logarithms yields

µ+ σ2/2 = 7.261506,

2µ+ 2σ2 = 16.398635.

The solution of these two equations is µ̂ = 6.323695 and σ̂2 = 1.875623, and then
σ̂ = 1.369534.

10.15 The two equations to solve are

0.2 = 1− e−(5/θ)τ ,

0.8 = 1− e−(12/θ)τ .

Moving the 1 to the left-hand side and taking logarithms produces

0.22314 = (5/θ)τ ,

1.60944 = (12/θ)τ .

Dividing the second equation by the first equation produces

7.21269 = 2.4τ .

Taking logarithms again produces

1.97584 = 0.87547τ,

and so τ̂ = 2.25689. Using the first equation,

θ̂ = 5/(0.223141/2.25689) = 9.71868.

Then Ŝ(8) = e−(8/9.71868)2.25689

= 0.52490.

10.16 The equations to solve are

0.5 = 1− exp[−(10,000/θ)τ ],

0.9 = 1− exp[−(100,000/θ)τ ].

Then

ln 0.5 = −0.69315 = −(10,000/θ)τ ,

ln 0.1 = −2.30259 = −(100,000/θ)τ .
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Dividing the second equation by the first gives

3.32192 = 10τ ,

ln 3.32192 = 1.20054 = τ ln 10 = 2.30259τ,

τ̂ = 1.20054/2.30259 = 0.52139.

Then

0.69315 = (10,000/θ)0.52139,

0.693151/0.52139 = 0.49512 = 10,000/θ,

θ̂ = 20,197.

10.17 The two moment equations are

4 + 5 + 21 + 99 + 421

5
= 110 =

θ

α− 1
,

42 + 52 + 212 + 992 + 4212

5
= 37,504.8 =

2θ2

(α− 1)(α− 2)
.

Dividing the second equation by the square of the first equation gives

37,504.8

1102
= 3.0996 =

2(α− 1)

α− 2
.

The solution is α̂ = 3.8188. From the first equation, θ̂ = 110(2.8188) = 310.068. For the
95th percentile,

0.95 = 1−
(

310.068

310.068 + π0.95

)3.8188

for π̂0.95 = 369.37.

10.18 After inflation, the 100 claims from year 1 total 100(10,000)(1.1)2 = 1,210,000, and
the 200 claims from year 2 total 200(12,500)(1.1) = 2,750,000. The average of the 300
inflated claims is 3,960,000/300 = 13,200. The moment equation is 13,200 = θ/(3− 1),
which yields θ̂ = 26,400.

10.19 The equations to solve are

0.2 = F (18.25) = Φ

(
ln 18.25− µ

σ

)
,

0.8 = F (35.8) = Φ

(
ln 35.8− µ

σ

)
.

The 20th and 80th percentiles of the normal distribution are −0.842 and 0.842, respectively.
The equations become

−0.842 =
2.904− µ

σ
,

0.842 =
3.578− µ

σ
.
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Dividing the first equation by the second yields

−1 =
2.904− µ
3.578− µ

.

The solution is µ̂ = 3.241 and substituting in either equation yields σ̂ = 0.4. The probability
of exceeding 30 is

Pr(X > 30) = 1− F (30) = 1− Φ

(
ln 30− 3.241

0.4

)
= 1− Φ(0.4)

= 1− Φ(0.4) = 1− 0.6554 = 0.3446.

10.20 For a mixture, the mean and second moment are a combination of the individual
moments. The first two moments are

E(X) = p(1) + (1− p)(10) = 10− 9p,

E(X2) = p(2) + (1− p)(200) = 200− 198p,

Var(X) = 200− 198p− (10− 9p)2 = 100− 18p− 81p2 = 4.

The only positive root of the quadratic equation is p̂ = 0.983.

10.21 We need the [0.6(21) = 12.6]th smallest observation. It is 0.4(38) + 0.6(39) = 38.6.

10.22 We need the [0.75(21) = 15.75]th smallest observation. It is 0.25(13) + 0.75(14) =
13.75.

10.23 µ̂ = 975, µ̂′2 = 977,916 2
3 , and σ̂2 = 977,916 2

3 − 9752 = 27,291 2
3 . The moment

equations are 975 = αθ and 27,291 2
3 = αθ2. The solutions are α̂ = 34.8321 and

θ̂ = 27.9915.

10.24 F (x) = (x/θ)γ/[1 + (x/θ)γ ]. The equations are 0.2 = (100/θ)γ/[1 + (100/θ)γ ]
and 0.8 = (400/θ)γ/[1 + (400/θ)γ ]. From the first equation, 0.2 = 0.8(100/θ)γ or
θγ = 4(100)γ . Insert this result in the second equation to get 0.8 = 4γ−1/(1 + 4γ−1), and
so γ̂ = 2 and then θ̂ = 200.

10.25 E(X) =
∫ 1

0
pxpdx = p/(1 + p) = x̄. p̂ = x̄/(1− x̄).

10.26 µ̂ = 3,800 = αθ, µ′2 = 16,332,000, σ̂2 = 1,892,000 = αθ2. α̂ = 7.6321, and
θ̂ = 497.89.

10.27 µ̂ = 2,000 = exp(µ + σ2/2) and µ̂′2 = 6,000,000 = exp(2µ + 2σ2). 7.690090 =
µ+ σ2/2 and 15.60727 = 2µ+ 2σ2. The solutions are µ̂ = 7.39817 and σ̂ = 0.636761.

Pr(X > 4,500) = 1− Φ[(ln 4,500− 7.39817)/0.636761]

= 1− Φ(1.5919) = 0.056.

10.28 µ̂ = 4.2 = (β/2)
√

2π and β̂ = 3.35112.

10.29 X is Pareto, and so E(X) = 1,000/(α− 1) = x̄ = 318.4. α̂ = 4.141.

10.30 rβ = 0.1001 and rβ(1+β) = 0.1103−0.10012 = 0.10027999. 1+β = 1.0017981,
β̂ = 0.0017981, and r̂ = 55.670.

10.31 rβ = 0.166 and rβ(1 + β) = 0.252 − 0.1662 = 0.224444. 1 + β = 1.352072,
β̂ = 0.352072, and r̂ = 0.47149.
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10.32 With n+ 1 = 16, we need the [0.3(16) = 4.8]th and [0.65(16) = 10.4]th smallest
observations. They are 0.2(280) + 0.8(350) = 336 and 0.6(450) + 0.4(490) = 466. The
equations are

0.3 = 1−
(

θγ

θγ + 336γ

)2

and 0.65 = 1−
(

θγ

θγ + 466γ

)2

,

(0.7)−1/2 = 1 + (336/θ)γ and (0.35)−1/2 = 1 + (466/θ)γ ,

(0.7)−1/2 − 1

(0.35)−1/2 − 1
= 0.282814 =

(
336

466

)γ
,

ln(0.282814) = γ ln(336/466), γ = 3.8614,

(0.7)−1/2 − 1 = (336/θ)3.8614,

(0.19523)1/3.8614 = 336/θ, θ = 558.74.

10.33 With n + 1 = 17, we need the [0.2(17) = 3.4]th and [0.7(17) = 11.9]th smallest
observations. They are 0.6(75) + 0.4(81) = 77.4 and 0.1(122) + 0.9(125) = 124.7. The
equations are

0.2 = 1− e−(77.4/θ)τ and 0.7 = 1− e−(124/7/θ)τ ,

− ln 0.8 = 0.22314 = (77.4/θ)τ and − ln 0.3 = 1.20397 = (124.7/θ)τ ,

1.20397/0.22314 = 5.39558 = (124.7/77.4)τ ,

τ = ln(5.39558)/ ln(124.7/77.4) = 3.53427,

θ = 77.4/0.223141/3.53427 = 118.32.

10.34 Shifting adds δ to the mean and median. The median of the unshifted distribution is
the solution to 0.5 = S(m) = e−m/θ for m = θ ln(2). The equations to solve are

300 = θ + δ and 240 = θ ln(2) + δ.

Subtracting the second equation from the first gives 60 = θ[1 − ln(2)] for θ = 195.53.
From the first equation, δ = 104.47.

SECTION 10.5

10.35 For the exact test, null should be rejected if X̄ ≤ c. The value of c comes from

0.05 = Pr(X̄ ≤ c|θ = 325)

= Pr(X̄/325 ≤ c/325),

where X̄/325 has a gamma distribution with parameters 50 and 0.02. From that distribution,
c/325 = 0.7793 for c = 253.27. Because the sample mean of 275 is not below this value,
the null hypothesis is not rejected. The p-value is obtained from

Pr(X̄ ≤ 275|θ = 325) = Pr(X̄/325 ≤ 275/325).

From the gamma distribution with parameters 50 and 0.02, this probability is 0.1353.
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For the normal approximation,

0.05 = Pr(X̄ ≤ c|θ = 325)

= Pr

(
Z ≤ c− 325

325/
√

50

)
.

Solving (c− 325)/(325/
√

50) = −1.645 produces c = 249.39. Again, the null hypothesis
is not rejected. For the p-value,

Pr

(
Z ≤ 275− 325

325/
√

50
= −1.0879

)
= 0.1383.
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MAXIMUM LIKELIHOOD ESTIMATION

11.1 Introduction

Estimation by the method of moments and percentile matching is often easy to do, but
these estimators tend to perform poorly, mainly because they use only a few features of
the data, rather than the entire set of observations. It is particularly important to use as
much information as possible when the population has a heavy right tail. For example,
when estimating parameters for the normal distribution, the sample mean and variance are
sufficient.1 However, when estimating parameters for a Pareto distribution, it is important
to know all the extreme observations in order to successfully estimate α. Another drawback
of these methods is that they require that all the observations are from the same random
variable. Otherwise, it is not clear what to use for the population moments or percentiles.
For example, if half the observations have a deductible of 50 and half have a deductible of

1This applies both in the formal statistical definition of sufficiency (not covered here) and in the conventional
sense. If the population has a normal distribution, the sample mean and variance convey as much information as
the original observations.

Loss Models: From Data to Decisions, Fifth Edition.
Stuart A. Klugman, Harry H. Panjer, and Gordon E. Willmot.
c© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Companion website: www.wiley.com/go/klugman/lossmodels5e
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100, it is not clear to what the sample mean should be equated.2 Finally, these methods
allow the analyst to make arbitrary decisions regarding the moments or percentiles to use.

There are a variety of estimators that use the individual data points. All of them are
implemented by setting an objective function and then determining the parameter values
that optimize that function. Of the many possibilities, the only one presented here is the
maximum likelihood estimator.

To define the maximum likelihood estimator, let the data set be the n eventsA1, . . . , An,
where Aj is whatever was observed for the jth observation. For example, Aj may consist
of a single point or an interval. The latter arises, for example, with grouped data. Further
assume that the event Aj results from observing the random variable Xj . The random
variables X1, . . . , Xn need not have the same probability distribution, but their distribu-
tions must depend on the same parameter vector, θ. In addition, the random variables are
assumed to be independent.

Definition 11.1 The likelihood function is

L(θ) =

n∏
j=1

Pr(Xj ∈ Aj |θ)

and the maximum likelihood estimate of θ is the vector that maximizes the likelihood
function.3

In the definition, if Aj is a single point and the distribution is continuous, then
Pr(Xj ∈ Aj |θ) is interpreted as the probability density function evaluated at that point. In
all other cases, it is the probability of that event.

There is no guarantee that the function has a maximum at eligible parameter values. It
is possible that as various parameters become zero or infinite, the likelihood function will
continue to increase. Care must be taken when maximizing this function because there may
be local maxima in addition to the global maximum. Often, it is not possible to analytically
maximize the likelihood function (by setting partial derivatives equal to zero). Numerical
approaches will usually be needed.

Because the observations are assumed to be independent, the product in the definition
represents the joint probability Pr(X1 ∈ A1, . . . , Xn ∈ An|θ), that is, the likelihood func-
tion is the probability of obtaining the sample results that were obtained, given a particular
parameter value. The estimate is then the parameter value that produces the model under
which the actual observations are most likely to be observed. One of the major attractions
of this estimator is that it is almost always available. That is, if you can write an expression
for the desired probabilities, you can execute this method. If you cannot write and evaluate
an expression for probabilities using your model, there is no point in postulating that model
in the first place, because you will not be able to use it to solve the larger actuarial problem.

2One way to rectify that drawback is to first determine a data-dependent model such as the Kaplan–Meier estimate
introduced in Section 14.3. Then use percentiles or moments from that model.
3Some authors write the likelihood function as L(θ|x), where the vector x represents the observed data. Because
observed data can take many forms, the dependence of the likelihood function on the data is suppressed in the
notation.
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Table 11.1 Data Set B.

27 82 115 126 155 161 243 294 340 384

457 680 855 877 974 1,193 1,340 1,884 2,558 15,743

EXAMPLE 11.1

Suppose that the data in Data Set B, introduced in Chapter 10 and reproduced here as
Table 11.1 were such that the exact value of all observations above 250 was unknown.
All that is known is that the value was greater than 250. Determine the maximum
likelihood estimate of θ for an exponential distribution.

For the first seven values, the set Aj contains the single point equal to the obser-
vation xj . Thus the first seven terms of the product are

f(27)f(82) · · · f(243) = θ−1e−27/θθ−1e−82/θ · · · θ−1e−243/θ = θ−7e−909/θ.

For each of the final 13 terms, the set Aj is the interval from 250 to infinity and,
therefore, Pr(Xj ∈ Aj) = Pr(Xj > 250) = e−250/θ. There are 13 such factors,
making the likelihood function

L(θ) = θ−7e−909/θ(e−250/θ)13 = θ−7e−4,159/θ.

It is easier to maximize the logarithm of the likelihood function. Because it occurs so
often, we denote the loglikelihood function as l(θ) = lnL(θ). Then,

l(θ) = −7 ln θ − 4,159θ−1,

l′(θ) = −7θ−1 + 4,159θ−2 = 0,

θ̂ =
4,159

7
= 594.14.

In this case, the calculus technique of setting the first derivative equal to zero is easy to
do. Also, evaluating the second derivative at this solution produces a negative number,
verifying that this solution is a maximum. �

11.2 Individual Data

Consider the special case where the value of each observation is recorded. It is easy to
write the loglikelihood function:

L(θ) =

n∏
j=1

fXj (xj |θ), l(θ) =

n∑
j=1

ln fXj (xj |θ).

The notation indicates that it is not necessary for each observation to come from the same
distribution, but we continue to assume that the parameter vector is common to each
distribution.
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EXAMPLE 11.2

Using Data Set B, determine the maximum likelihood estimates for an exponential
distribution, for a gamma distribution where α is known to equal 2, and for a gamma
distribution where both parameters are unknown.

For the exponential distribution, the general solution is

l(θ) =

n∑
j=1

(
− ln θ − xjθ−1

)
= −n ln θ − nx̄θ−1,

l′(θ) = −nθ−1 + nx̄θ−2 = 0,

nθ = nx̄,

θ̂ = x̄.

For Data Set B, θ̂ = x̄ = 1,424.4. The value of the loglikelihood function is−165.23.
For this situation, the method of moments and maximum likelihood estimates are
identical. For further insight, see Exercise 11.16.

For the gamma distribution with α = 2,

f(x|θ) =
x2−1e−x/θ

Γ(2)θ2
= xθ−2e−x/θ,

ln f(x|θ) = lnx− 2 ln θ − xθ−1,

l(θ) =

n∑
j=1

lnxj − 2n ln θ − nx̄θ−1,

l′(θ) = −2nθ−1 + nx̄θ−2 = 0,

θ̂ = 1
2 x̄.

For Data Set B, θ̂ = 1,424.4/2 = 712.2 and the value of the loglikelihood function is
−179.98. Again, this estimate is the same as the method of moments estimate.

For the gamma distribution with unknown parameters, the function is not as
simple:

f(x|α, θ) =
xα−1e−x/θ

Γ(α)θα
,

ln f(x|α, θ) = (α− 1) lnx− xθ−1 − ln Γ(α)− α ln θ.

The partial derivative with respect to α requires the derivative of the gamma function.
The resulting equation cannot be solved analytically. Using numerical methods, the
estimates are α̂ = 0.55616 and θ̂ = 2,561.1 and the value of the loglikelihood function
is −162.29. These do not match the method of moments estimates. �

11.2.1 Exercises

11.1 Repeat Example 11.2 using the inverse exponential, inverse gamma with α = 2,
and inverse gamma distributions. Compare your estimates with the method of moments
estimates.
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11.2 (*) You are given the five observations 521, 658, 702, 819, and 1,217. Your model is
the single-parameter Pareto distribution with distribution function

F (x) = 1−
(

500

x

)α
, x > 500, α > 0.

Determine the maximum likelihood estimate of α.

11.3 (*) You have observed the following five claim severities: 11.0, 15.2, 18.0, 21.0, and
25.8. Determine the maximum likelihood estimate of µ for the following model (which is
the reciprocal inverse Gaussian distribution; see Exercise 5.20a of [15]):

f(x) =
1√
2πx

exp

[
− 1

2x
(x− µ)2

]
, x, µ > 0.

11.4 (*) The following values were calculated from a random sample of 10 losses:

10∑
j=1

x−2
j = 0.00033674,

10∑
j=1

x−1
j = 0.023999,

10∑
j=1

x−0.5
j = 0.34445,

10∑
j=1

x0.5
j = 488.97

10∑
j=1

xj = 31,939,

10∑
j=1

x2
j = 211,498,983.

Losses come from a Weibull distribution with τ = 0.5 [so F (x) = 1 − e−(x/θ)0.5

].
Determine the maximum likelihood estimate of θ.

11.5 (*) A sample of n independent observations x1, . . . , xn came from a distribution with
a pdf of f(x) = 2θx exp(−θx2), x > 0. Determine the maximum likelihood estimator
(mle) of θ.

11.6 (*) Let x1, . . . , xn be a random sample from a population with cdf F (x) = xp, 0 <
x < 1. Determine the mle of p.

11.7 A random sample of 10 claims obtained from a gamma distribution is given as follows:

1,500 6,000 3,500 3,800 1,800 5,500 4,800 4,200 3,900 3,000

(a) (*) Suppose it is known that α = 12. Determine the maximum likelihood estimate
of θ.

(b) Determine the maximum likelihood estimates of α and θ.

11.8 A random sample of five claims from a lognormal distribution is given as follows:

500 1,000 1,500 2,500 4,500
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Estimate µ and σ by maximum likelihood. Estimate the probability that a loss will
exceed 4,500.

11.9 (*) Let x1, . . . , xn be a random sample from a random variable with pdf f(x) =
θ−1e−x/θ, x > 0. Determine the mle of θ.

11.10 (*) The random variable X has pdf f(x) = β−2x exp(−0.5x2/β2), x, β > 0. For
this random variable, E(X) = (β/2)

√
2π and Var(X) = 2β2− πβ2/2. You are given the

following five observations:

4.9 1.8 3.4 6.9 4.0

Determine the maximum likelihood estimate of β.

11.11 (*) Let x1, . . . , xn be a random sample from a random variable with cdf F (x) =
1− x−α, x > 1, α > 0. Determine the mle of α.

11.12 (*) The random variable X has pdf f(x) = αλα(λ + x)−α−1, x, α, λ > 0. It is
known that λ = 1,000. You are given the following five observations:

43 145 233 396 775

Determine the maximum likelihood estimate of α.

11.13 The following 20 observations were collected. It is desired to estimate Pr(X >
200). When a parametric model is called for, use the single-parameter Pareto distribution
for which F (x) = 1− (100/x)α, x > 100, α > 0.

132 149 476 147 135 110 176 107 147 165

135 117 110 111 226 108 102 108 227 102

(a) Determine the empirical estimate of Pr(X > 200).

(b) Determine the method of moments estimate of the single-parameter Pareto
parameter α and use it to estimate Pr(X > 200).

(c) Determine the maximum likelihood estimate of the single-parameter Pareto
parameter α and use it to estimate Pr(X > 200).

11.14 Consider the inverse Gaussian distribution with density given by

fX(x) =

(
θ

2πx3

)1/2

exp

[
− θ

2x

(
x− µ
µ

)2
]
, x > 0.

(a) Show that

n∑
j=1

(xj − µ)2

xj
= µ2

n∑
j=1

(
1

xj
− 1

x

)
+
n

x
(x− µ)2,

where x = (1/n)
∑n
j=1 xj .
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(b) For a sample (x1, . . . , xn), show that the maximum likelihood estimates of µ and
θ are

µ̂ = x̄

and
θ̂ =

n
n∑
j=1

(
1

xj
− 1

x

) .
11.15 Suppose thatX1, . . . , Xn are independent and normally distributed with mean E(Xj) =
µ and Var(Xj) = (θmj)

−1, where mj > 0 is a known constant. Prove that the maximum
likelihood estimates of µ and θ are

µ̂ = X̄

and

θ̂ = n

 n∑
j=1

mj(Xj − X̄)2

−1

,

where X̄ = (1/m)
∑n
j=1mjXj and m =

∑n
j=1mj .

11.16 Suppose that X1, . . . , Xn are i.i.d. with distribution (5.6). Prove that the maximum
likelihood estimate of the mean is the sample mean. In other words, if θ̂ is the mle of θ,
prove that

µ̂(θ) = µ(θ̂) = X̄.

11.3 Grouped Data

When data are grouped and the groups span the range of possible observations, the obser-
vations may be summarized as follows. Begin with a set of numbers c0 < c1 < · · · < ck,
where c0 is the smallest possible observation (often zero) and ck is the largest possible
observation (often infinity). From the sample, let nj be the number of observations in the
interval (cj−1, cj ]. For such data, the likelihood function is

L(θ) =

k∏
j=1

[F (cj |θ)− F (cj−1|θ)]nj ,

and its logarithm is

l(θ) =

k∑
j=1

nj ln[F (cj |θ)− F (cj−1|θ)].

EXAMPLE 11.3

Using Data Set C from Chapter 10, reproduced here as Table 11.2, determine the
maximum likelihood estimate for an exponential distribution.

The loglikelihood function is

l(θ) = 99 ln[F (7,500)− F (0)] + 42 ln[F (17,500)− F (7,500)] + · · ·
+3 ln[1− F (300,000)]

= 99 ln(1− e−7,500/θ) + 42 ln(e−7,500/θ − e−17,500/θ) + · · ·
+3 ln e−300,000/θ.
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Table 11.2 Data Set C.

Payment range Number of payments

0–7,500 99

7,500–17,500 42

17,500–32,500 29

32,500–67,500 28

67,500–125,000 17

125,000–300,000 9

Over 300,000 3

Table 11.3 The data for Exercise 11.19.

Loss Number of observations Loss Number of observations

0–25 5 350–500 17

25–50 37 500–750 13

50–75 28 750–1000 12

75–100 31 1,000–1,500 3

100–125 23 1,500–2,500 5

125–150 9 2,500–5,000 5

150–200 22 5,000–10,000 3

200–250 17 10,000–25,000 3

250–350 15 25,000– 2

A numerical routine is needed to produce θ̂ = 29,721, and the value of the loglikeli-
hood function is −406.03.�

11.3.1 Exercises

11.17 From Data Set C, determine the maximum likelihood estimates for gamma, inverse
exponential, and inverse gamma distributions.

11.18 (*) Losses follow a distribution with cdf F (x) = 1 − θ/x, x > θ. A sample of 20
losses contained 9 below 10, 6 between 10 and 25, and 5 in excess of 25. Determine the
maximum likelihood estimate of θ.

11.19 Table 11.3 presents the results of a sample of 250 losses. Consider the inverse
exponential distribution with cdf F (x) = e−θ/x, x > 0, θ > 0. Determine the maximum
likelihood estimate of θ.

11.4 Truncated or Censored Data

The definition of right censoring is as follows.

Definition 11.2 An observation is censored from above (also called right censored) at u
if when it is at or above u it is recorded as being equal to u, but when it is below u it is
recorded at its observed value.
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A similar definition applies to left censoring, which is uncommon in insurance settings.
Data Set D in Chapter 10 illustrates how censoring can occur in mortality data. If

observation of an insured ends before death, all we know is that death occurs sometime
after the time of the last observation. Another common situation is a policy limit where, if
the actual loss exceeds the limit, all that is known is that the limit was exceeded.

When data are censored, there is no additional complication. Right censoring simply
creates an interval running from the censoring point to infinity. Data below the censoring
point are individual data, and so the likelihood function contains both density and distribu-
tion function terms.

The definition of truncation is as follows.

Definition 11.3 An observation is truncated from below (also called left truncated) at d
if when it is at or below d it is not recorded, but when it is above d it is recorded at its
observed value.

A similar definition applies to right truncation, which is uncommon in insurance
settings.

Data Set D also illustrates left truncation. For policies sold before the observation
period begins, some insured lives will die while others will be alive to enter observation.
Not only will their death times be unrecorded, but we will not even know how many there
were. Another common situation is a deductible. Losses below the deductible are not
recorded and there is no count of how many losses were below the deductible.

Truncated data present more of a challenge. There are two ways to proceed. One is
to shift the data by subtracting the truncation point from each observation. The other is to
accept the fact that there is no information about values below the truncation point but then
attempt to fit a model for the original population.

EXAMPLE 11.4

Assume that the values in Data Set B had been truncated from below at 200. Using
both methods, estimate the value of α for a Pareto distribution with θ = 800 known.
Then use the model to estimate the cost per payment with deductibles of 0, 200, and
400.

Using the shifting approach, the values become 43, 94, 140, 184, 257, 480, 655,
677, 774, 993, 1,140, 1,684, 2,358, and 15,543. The likelihood function is

L(α) =

14∏
j=1

α(800α)

(800 + xj)α+1
,

l(α) =

14∑
j=1

[lnα+ α ln 800− (α+ 1) ln(xj + 800)]

= 14 lnα+ 93.5846α− 103.969(α+ 1)

= 14 lnα− 103.969− 10.384α,

l′(α) = 14α−1 − 10.384,

α̂ =
14

10.384
= 1.3482.
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Because the data have been shifted, it is not possible to estimate the cost with no
deductible. With a deductible of 200, the expected cost is the expected value of
the estimated Pareto distribution, 800/0.3482 = 2,298. Raising the deductible to
400 is equivalent to imposing a deductible of 200 on the modeled distribution. From
Theorem 8.7, the expected cost per payment is

E(X)− E(X ∧ 200)

1− F (200)
=

800

0.3482

(
800

200 + 800

)0.3482

(
800

200 + 800

)1.3482 =
1,000

0.3482
= 2,872.

For the unshifted approach, we need to ask the key question required when
constructing the likelihood function. That is, what is the probability of observing each
value knowing that values under 200 are omitted from the data set? This becomes a
conditional probability and therefore the likelihood function is (where the xj values
are now the original values)

L(α) =

14∏
j=1

f(xj |α)

1− F (200|α)
=

14∏
j=1

[
α(800α)

(800 + xj)α+1

/(
800

800 + 200

)α]

=

14∏
j=1

α(1,000α)

(800 + xj)α+1
,

l(α) = 14 lnα+ 14α ln 1,000− (α+ 1)

14∑
j=1

ln(800 + xj),

= 14 lnα+ 96.709α− (α+ 1)105.810,

l′(α) = 14α−1 − 9.101,

α̂ = 1.5383.

This model is for losses with no deductible, and therefore the expected payment
without a deductible is 800/0.5383 = 1,486. Imposing deductibles of 200 and 400
produces the following results:

E(X)− E(X ∧ 200)

1− F (200)
=

1,000

0.5383
= 1,858,

E(X)− E(X ∧ 400)

1− F (400)
=

1,200

0.5383
= 2,229.

�

It should now be clear that the contribution to the likelihood function can be written for
most any type of observation. In general, the likelihood is always (proportional to) the
probability of observing the data under the model, with the understanding for this purpose
that pdfs for continuous variables should be viewed as probabilities. The following two
steps summarize the process:

1. For the numerator, use f(x) if the exact value, x, of the observation is known. If it is
only known that the observation is between y and z, use F (z)− F (y).

2. For the denominator, if there is no truncation, the denominator is 1. Else, let d be the
truncation point, in which case the denominator is 1− F (d).
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Table 11.4 The likelihood function for Example 11.5.

Obs. x, y d L Obs. x, y d L

1 y = 0.1 0 1− F (0.1) 16 x = 4.8 0 f(4.8)

2 y = 0.5 0 1− F (0.5) 17 y = 4.8 0 1− F (4.8)

3 y = 0.8 0 1− F (0.8) 18 y = 4.8 0 1− F (4.8)

4 x = 0.8 0 f(0.8) 19–30 y = 5.0 0 1− F (5.0)

5 y = 1.8 0 1− F (1.8) 31 y = 5.0 0.3 1−F (5.0)
1−F (0.3)

6 y = 1.8 0 1− F (1.8) 32 y = 5.0 0.7 1−F (5.0)
1−F (0.7)

7 y = 2.1 0 1− F (2.1) 33 x = 4.1 1.0 f(4.1)
1−F (1.0)

8 y = 2.5 0 1− F (2.5) 34 x = 3.1 1.8 f(3.1)
1−F (1.8)

9 y = 2.8 0 1− F (2.8) 35 y = 3.9 2.1 1−F (3.9)
1−F (2.1)

10 x = 2.9 0 f(2.9) 36 y = 5.0 2.9 1−F (5.0)
1−F (2.9)

11 x = 2.9 0 f(2.9) 37 y = 4.8 2.9 1−F (4.8)
1−F (2.9)

12 y = 3.9 0 1− F (3.9) 38 x = 4.0 3.2 f(4.0)
1−F (3.2)

13 x = 4.0 0 f(4.0) 39 y = 5.0 3.4 1−F (5.0)
1−F (3.4)

14 y = 4.0 0 1− F (4.0) 40 y = 5.0 3.9 1−F (5.0)
1−F (3.9)

15 y = 4.1 0 1− F (4.1)

EXAMPLE 11.5

Determine Pareto and gamma models for the time to death for Data Set D, introduced
in Chapter 10.

Table 11.4 shows how the likelihood function is constructed for these observa-
tions. For observed deaths, the time is known, and so the exact value of x is available.
For surrenders or those reaching time 5, the observation is censored, and therefore
death is known to be some time in the interval from the surrender time, y, to infinity.
In the table, z = ∞ is not noted because all interval observations end at infinity. The
likelihood function must be maximized numerically. For the Pareto distribution, there
is no solution. The likelihood function keeps getting larger as α and θ get larger.4 For
the gamma distribution, the maximum is at α̂ = 2.617 and θ̂ = 3.311. �

Discrete data present no additional problems.

4For a Pareto distribution, the limit as the parameters α and θ become infinite with the ratio being held constant
is an exponential distribution. Thus, for this example, the exponential distribution is a better model (as measured
by the likelihood function) than any Pareto model.
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Table 11.5 Data Set A.

Number of accidents Number of drivers

0 81,714

1 11,306

2 1,618

3 250

4 40

5 or more 7

EXAMPLE 11.6

For Data Set A, which was introduced in Chapter 10 and is reproduced here as Table
11.5, assume that the seven drivers with five or more accidents all had exactly five
accidents. Determine the maximum likelihood estimate for a Poisson distribution and
for a binomial distribution with m = 8.

In general, for a discrete distribution with complete data, the likelihood function
is

L(θ) =

∞∏
j=1

[p(xj |θ)]nj ,

where xj is one of the observed values, p(xj |θ) is the probability of observing xj , and
nj is the number of times xj was observed in the sample.

For the Poisson distribution,

L(λ) =

∞∏
x=0

(
e−λλx

x!

)nx
=

∞∏
x=0

e−nxλλxnx

(x!)nx
,

l(λ) =

∞∑
x=0

(−nxλ+ xnx lnλ− nx lnx!) = −nλ+ nx̄ lnλ−
∞∑
x=0

nx lnx!,

l′(λ) = −n+
nx̄

λ
= 0,

λ̂ = x̄.

For the binomial distribution,

L(q) =

m∏
x=0

[(
m

x

)
qx(1− q)m−x

]nx
=

m∏
x=0

m!nxqxnx(1− q)(m−x)nx

(x!)nx [(m− x)!]nx
,

l(q) =

m∑
x=0

[nx lnm! + xnx ln q + (m− x)nx ln(1− q)]

−
m∑
x=0

[nx lnx! + nx ln(m− x)!],

l′(q) =

m∑
x=0

xnx
q
− (m− x)nx

1− q
=
nx̄

q
− mn− nx̄

1− q
= 0,

q̂ =
x̄

m
.
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For this problem, x̄ = [81,714(0) + 11,306(1) + 1,618(2) + 250(3) + 40(4) +

7(5)]/94,935 = 0.16313. Therefore, for the Poisson distribution, λ̂ = 0.16313, and
for the binomial distribution, q̂ = 0.16313/8 = 0.02039. �

In Exercise 11.23, you are asked to estimate the Poisson parameter when the actual values
for those with five or more accidents are not known.

11.4.1 Exercises

11.20 Determine maximum likelihood estimates for Data Set B using the inverse exponen-
tial, gamma, and inverse gamma distributions. Assume that the data have been censored at
250 and then compare your answers to those obtained in Example 11.2 and Exercise 11.1.

11.21 Repeat Example 11.4 using a Pareto distribution with both parameters unknown.

11.22 Repeat Example 11.5, this time finding the distribution of the time to surrender.

11.23 Repeat Example 11.6, but this time assume that the actual values for the seven
drivers who have five or more accidents are unknown. Note that this is a case of censoring.

11.24 (*) Five hundred losses are observed. Five of the losses are 1,100, 3,200, 3,300,
3,500, and 3,900. All that is known about the other 495 losses is that they exceed 4,000.
Determine the maximum likelihood estimate of the mean of an exponential model.

11.25 (*) Ten claims were observed. The values of seven of them (in thousands) were 3,
7, 8, 12, 12, 13, and 14. The remaining three claims were all censored at 15. The proposed
model has a hazard rate function given by

h(t) =


λ1, 0 < t < 5,

λ2, 5 ≤ t < 10,

λ3, t ≥ 10.

Determine the maximum likelihood estimates of the three parameters.

11.26 (*) A random sample of size 5 is taken from a Weibull distribution with τ = 2. Two
of the sample observations are known to exceed 50 and the three remaining observations
are 20, 30, and 45. Determine the maximum likelihood estimate of θ.

11.27 (*) Phil and Sylvia are competitors in the light bulb business. Sylvia advertises that
her light bulbs burn twice as long as Phil’s. You were able to test 20 of Phil’s bulbs and
10 of Sylvia’s. You assumed that both of their bulbs have an exponential distribution, with
time measured in hours. You have separately estimated the parameters as θ̂P = 1,000 and
θ̂S = 1,500 for Phil and Sylvia, respectively, using maximum likelihood. Using all 30
observations, determine θ̂∗, the maximum likelihood estimate of θP restricted by Sylvia’s
claim that θS = 2θP .

11.28 (*) A sample of 100 losses revealed that 62 were below 1,000 and 38 were above
1,000. An exponential distribution with mean θ is considered. Using only the given infor-
mation, determine the maximum likelihood estimate of θ. Now suppose you are also
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given that the 62 losses that were below 1,000 totaled 28,140, while the total for the 38
above 1,000 remains unknown. Using this additional information, determine the maximum
likelihood estimate of θ.

11.29 (*) For claims reported in 1997, the number settled in 1997 (year 0) was unknown,
the number settled in 1998 (year 1) was three, and the number settled in 1999 (year 2) was
one. The number settled after 1999 is unknown. For claims reported in 1998, there were
five settled in year 0, two settled in year 1, and the number settled after year 1 is unknown.
For claims reported in 1999, there were four settled in year 0 and the number settled after
year 0 is unknown. Let N be the year in which a randomly selected claim is settled and
assume that it has probability function Pr(N = n) = pn = (1 − p)pn, n = 0, 1, 2, . . . .
Determine the maximum likelihood estimate of p.

11.30 (*) Losses have a uniform distribution on the interval (0, w). Five losses are observed,
all with a deductible of 4. Three losses are observed with values of 5, 9, and 13. The other
two losses are censored at a value of 4 + p. The maximum likelihood estimate of w is 29.
Determine the value of p.

11.31 (*) Three losses are observed with values 66, 91, and 186. Seven other losses are
known to be less than or equal to 60. Losses have an inverse exponential distribution with
cdf F (x) = e−θ/x, x > 0. Determine the maximum likelihood estimate of the population
mode.

11.32 (*) Policies have a deductible of 100. Seven losses are observed, with values 120,
180, 200, 270, 300, 1,000, and 2,500. Ground-up losses have a Pareto distribution with
θ = 400 and α unknown. Determine the maximum likelihood estimate of α.

11.5 Variance and Interval Estimation for Maximum Likelihood Estimators

In general, it is not easy to determine the variance of complicated estimators such as the
mle. However, it is possible to approximate the variance. The key is a theorem that can
be found in most mathematical statistics books. The particular version stated here and its
multiparameter generalization are taken from [20] and stated without proof. Recall that
L(θ) is the likelihood function and l(θ) its logarithm. All of the results assume that the
population has a distribution that is a member of the chosen parametric family.

Theorem 11.4 Assume that the pdf (pf in the discrete case) f(x; θ) satisfies the following
for θ in an interval containing the true value (replace integrals by sums for discrete vari-
ables):

(i) ln f(x; θ) is three times differentiable with respect to θ.

(ii)
∫ ∂

∂θ
f(x; θ) dx = 0. This formula implies that the derivative may be taken outside

the integral and so we are just differentiating the constant 1.5

5The integrals in (ii) and (iii) are to be evaluated over the range of x values for which f(x; θ) > 0.
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(iii)
∫ ∂2

∂θ2
f(x; θ) dx = 0. This formula is the same concept for the second derivative.

(iv) −∞ <
∫
f(x; θ)

∂2

∂θ2
ln f(x; θ) dx < 0. This inequality establishes that the indicated

integral exists and that the location where the derivative is zero is a maximum.

(v) There exists a function H(x) such that∫
H(x)f(x; θ) dx <∞ with

∣∣∣∣ ∂3

∂θ3
ln f(x; θ)

∣∣∣∣ < H(x).

This inequality makes sure that the population is not overpopulated with regard to
extreme values.

Then the following results hold:

(a) As n → ∞, the probability that the likelihood equation [L′(θ) = 0] has a solution
goes to 1.

(b) As n → ∞, the distribution of the mle θ̂n converges to a normal distribution with
mean θ and variance such that I(θ) Var(θ̂n)→ 1, where

I(θ) = −nE
[
∂2

∂θ2
ln f(X; θ)

]
= −n

∫
f(x; θ)

∂2

∂θ2
ln f(x; θ) dx

= nE

[(
∂

∂θ
ln f(X; θ)

)2
]

= n

∫
f(x; θ)

(
∂

∂θ
ln f(x; θ)

)2

dx.

For any z, part (b) is to be interpreted as

lim
n→∞

Pr

(
θ̂n − θ

[I(θ)]−1/2
< z

)
= Φ(z),

and therefore [I(θ)]−1 is a useful approximation for Var(θ̂n). The quantity I(θ) is called
the information (sometimes, more specifically, Fisher information). It follows from this
result that the mle is asymptotically unbiased and consistent. The conditions in statements
(i)–(v) are often referred to as “mild regularity conditions.” A skeptic would translate this
statement as “conditions that are almost always true but are often difficult to establish, so
we’ll just assume they hold in our case.” Their purpose is to ensure that the density function
is fairly smooth with regard to changes in the parameter and that there is nothing unusual
about the density itself.6

The preceding results assume that the sample consists of i.i.d. random observations.
A more general version of the result uses the logarithm of the likelihood function:

I(θ) = −E
[
∂2

∂θ2
l(θ)

]
= E

[(
∂

∂θ
l(θ)

)2
]
.

The only requirement here is that the same parameter value apply to each observation.

6For an example of a situation in which these conditions do not hold, see Exercise 11.34.
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If there is more than one parameter, the only change is that the vector of maximum
likelihood estimates now has an asymptotic multivariate normal distribution. The covari-
ance matrix7 of this distribution is obtained from the inverse of the matrix with (r, s)th
element,

I(θ)rs = −E
[

∂2

∂θs ∂θr
l(θ)

]
= −nE

[
∂2

∂θs ∂θr
ln f(X; θ)

]
= E

[
∂

∂θr
l(θ)

∂

∂θs
l(θ)

]
= nE

[
∂

∂θr
ln f(X; θ)

∂

∂θs
ln f(X; θ)

]
.

The first expression on each line is always correct. The second expression assumes that the
likelihood is the product of n identical densities. This matrix is often called the infor-
mation matrix. The information matrix also forms the Cramér–Rao lower bound, as
developed in Section 10.2.2.2. That is, under the usual conditions, no unbiased estimator
has a smaller variance than that given by the inverse of the information. Therefore, at least
asymptotically, no unbiased estimator is more accurate than the mle.

EXAMPLE 11.7

Estimate the covariance matrix of the mle for the lognormal distribution. Then apply
this result to Data Set B.

The likelihood function and its logarithm are

L(µ, σ) =

n∏
j=1

1

xjσ
√

2π
exp

[
− (lnxj − µ)2

2σ2

]
,

l(µ, σ) =

n∑
j=1

[
− lnxj − lnσ − 1

2
ln(2π)− 1

2

(
lnxj − µ

σ

)2
]
.

The first partial derivatives are

∂l

∂µ
=

n∑
j=1

lnxj − µ
σ2

and
∂l

∂σ
= −n

σ
+

n∑
j=1

(lnxj − µ)2

σ3
.

The second partial derivatives are

∂2l

∂µ2
= − n

σ2
,

∂2l

∂σ ∂µ
= −2

n∑
j=1

lnxj − µ
σ3

,

∂2l

∂σ2
=

n

σ2
− 3

n∑
j=1

(lnxj − µ)2

σ4
.

7For any multivariate random variable, the covariance matrix has the variances of the individual random variables
on the main diagonal and covariances in the off-diagonal positions.
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The expected values are (lnXj has a normal distribution with mean µ and standard
deviation σ)

E
(
∂2l

∂µ2

)
= − n

σ2
,

E
(

∂2l

∂µ ∂σ

)
= 0,

E
(
∂2l

∂σ2

)
= −2n

σ2
.

Changing the signs and inverting produces an estimate of the covariance matrix (it is
an estimate because Theorem 11.4 only provides the covariance matrix in the limit).
It is σ

2

n
0

0
σ2

2n

 .
For the lognormal distribution, the maximum likelihood estimates are the solutions to
the two equations

n∑
j=1

lnxj − µ
σ2

= 0 and − n

σ
+

n∑
j=1

(lnxj − µ)2

σ3
= 0.

From the first equation, µ̂ = (1/n)
∑n
j=1 lnxj , and from the second equation, σ̂2 =

(1/n)
∑n
j=1(lnxj−µ̂)2. For Data Set B, the values are µ̂ = 6.1379 and σ̂2 = 1.9305,

or σ̂ = 1.3894. With regard to the covariance matrix, the true values are needed. The
best we can do is substitute the estimated values to obtain

V̂ar(µ̂, σ̂) =

[
0.0965 0

0 0.0483

]
. (11.1)

The multiple “hats” in the expression indicate that this is an estimate of the variance
of the estimators. �

The zeros off the diagonal indicate that the two parameter estimators are asymptotically
uncorrelated. For the particular case of the lognormal distribution, the estimators are
uncorrelated for any sample size. One thing we could do with this information is construct
approximate 95% confidence intervals for the true parameter values. These would be 1.96
standard deviations on either side of the estimate:

µ: 6.1379± 1.96(0.0965)1/2 = 6.1379± 0.6089,

σ: 1.3894± 1.96(0.0483)1/2 = 1.3894± 0.4308.

To obtain the information matrix, it is necessary to take both derivatives and expected
values, which is not always easy to do. A way to avoid this problem is to simply not take
the expected value. Rather than working with the number that results from the expectation,
use the observed data points. The result is called the observed information.
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EXAMPLE 11.8

Estimate the covariance in Example 11.7 using the observed information.

Substitution of the observations into the second derivatives produces

∂2l

∂µ2
= − n

σ2
= −20

σ2
,

∂2l

∂σ ∂µ
= −2

n∑
j=1

lnxj − µ
σ3

= −2
122.7576− 20µ

σ3
,

∂2l

∂σ2
=

n

σ2
− 3

n∑
j=1

(lnxj − µ)2

σ4
=

20

σ2
− 3

792.0801− 245.5152µ+ 20µ2

σ4
.

Inserting the parameter estimates produces the negatives of the entries of the observed
information,

∂2l

∂µ2
= −10.3600,

∂2l

∂σ ∂µ
= 0,

∂2l

∂σ2
= −20.7190.

Changing the signs and inverting produces the same values as in (11.1). This is a
feature of the lognormal distribution that need not hold for other models. �

Sometimes it is not even possible to take the derivative. In that case, an approximate second
derivative can be used. A reasonable approximation is

∂2f(θ)

∂θi ∂θj

.
=

1

hihj
[f(θ + 1

2hiei + 1
2hjej)− f(θ + 1

2hiei −
1
2hjej)

− f(θ − 1
2hiei + 1

2hjej) + f(θ − 1
2hiei −

1
2hjej)],

where ei is a vector with all zeros except for a 1 in the ith position and hi = θi/10v , where
v is one-third the number of significant digits used in calculations.

EXAMPLE 11.9

Repeat Example 11.8 using approximate derivatives.

Assume that there are 15 significant digits being used. Then, h1 = 6.1379/105

and h2 = 1.3894/105. Reasonably close values are 0.00006 and 0.00001. The first
approximation is

∂2l

∂µ2

.
=
l(6.13796, 1.3894)− 2l(6.1379, 1.3894) + l(6.13784, 1.3894)

(0.00006)2

=
−157.71389308198− 2(−157.71389304968) + (−157.71389305468)

(0.00006)2

= −10.3604.

The other two approximations are

∂2l

∂σ ∂µ

.
= 0.0003 and

∂2l

∂σ2

.
= −20.7208.

We see that here the approximation works very well. �
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11.5.1 Exercises

11.33 Determine 95% confidence intervals for the parameters of exponential and gamma
models for Data Set B. The likelihood function and maximum likelihood estimates were
determined in Example 11.2.

11.34 Let X have a uniform distribution on the interval from 0 to θ. Show that the
maximum likelihood estimator is θ̂ = max(X1, . . . , Xn). Use Examples 10.5 and 10.9
to show that this estimator is asymptotically unbiased and to obtain its variance. Show that
Theorem 11.4 yields a negative estimate of the variance and that item (ii) in the conditions
does not hold.

11.35 (*) A distribution has two parameters, α and β. A sample of size 10 produced the
following loglikelihood function:

l(α, β) = −2.5α2 − 3αβ − β2 + 50α+ 2β + k,

where k is a constant. Estimate the covariance matrix of the mle (α̂, β̂).

11.36 (*) A sample of size 40 has been taken from a population with pdf

f(x) = (2πθ)−1/2e−x
2/(2θ), −∞ < x <∞, θ > 0.

The mle of θ is θ̂ = 2. Approximate the MSE of θ̂.

11.37 Four observations were made from a random variable having the density function
f(x) = 2λxe−λx

2

, x, λ > 0. Exactly one of the four observations was less than 2.

(a) (*) Determine the mle of λ.
(b) Approximate the variance of the mle of λ.

11.38 Consider a random sample of size n from a Weibull distribution. For this exercise,
write the Weibull survival function as

S(x) = exp

{
−
[

Γ(1 + τ−1)x

µ

]τ}
.

For this exercise, assume that τ is known and that only µ is to be estimated.

(a) Show that E(X) = µ.
(b) Show that the maximum likelihood estimate of µ is

µ̂ = Γ(1 + τ−1)

 1

n

n∑
j=1

xτj

1/τ

.

(c) Show that using the observed information produces the variance estimate

V âr(µ̂) =
µ̂2

nτ2
,

where µ is replaced by µ̂.
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(d) Show that using the information (again replacing µ with µ̂) produces the same
variance estimate as in part (c).

(e) Show that µ̂ has a transformed gamma distribution with α = n, θ = µn−1/τ , and
τ = τ . Use this result to obtain the exact variance of µ̂ (as a function of µ).
Hint: The variableXτ has an exponential distribution, and so the variable

∑n
j=1X

τ
j

has a gamma distribution with first parameter equal to n and second parameter
equal to the mean of the exponential distribution.

11.6 Functions of Asymptotically Normal Estimators

We are often more interested in a quantity that is a function of the parameters. For example,
we might be interested in the lognormal mean as an estimate of the population mean.
That is, we want to use exp(µ̂ + σ̂2/2) as an estimate of the population mean, where
the maximum likelihood estimates of the parameters are used. It is not trivial to evaluate
the mean and variance of this random variable, because it is a function of two variables
with different distributions. The following theorem (from [19]) provides an approximate
solution. The method is often called the delta method.

Theorem 11.5 Let Xn = (X1n, . . . , Xkn)T be a multivariate random variable of dimen-
sion k based on a sample of size n. Assume that X is asymptotically normal with mean θ
and covariance matrix Σ/n, where neither θ nor Σ depend on n. Let g be a function of
k variables that is totally differentiable. Let Gn = g(X1n, . . . , Xkn). Then Gn is asymp-
totically normal with mean g(θ) and variance (ATΣA)/n, where A is the vector of first
derivatives of g, that is, A = (∂g/∂θ1, . . . , ∂g/∂θk)T and it is to be evaluated at θ, the
true parameters of the original random variable.

The statement of the theorem is hard to decipher. The Xs are the estimators and g
is the function of the parameters that are being estimated. For a model with one param-
eter, the theorem reduces to the following statement. Let θ̂ be an estimator of θ that has an
asymptotic normal distribution with mean θ and variance Var(θ̂). Then, g(θ̂) has an asymp-
totic normal distribution with mean g(θ) and asymptotic variance [g′(θ)]Var(θ̂)[g′(θ)] =

g′(θ)2Var(θ̂). To obtain a useful numerical result, any parameters that appear will usually
be replaced by an estimate.

Note that the theorem does not specify the type of estimator used. All that is required
is that the estimator have an asymptotic multivariate normal distribution. For maximum
likelihood estimators, under the usual regularity conditions, this holds and the information
matrix can be used to estimate the asymptotic variance.

EXAMPLE 11.10

Use the delta method to approximate the variance of the mle of the probability that an
observation from an exponential distribution exceeds 200. Apply this result to Data
Set B.

From Example 11.2, we know that the maximum likelihood estimate of the expo-
nential parameter is the sample mean. We are asked to estimate p = Pr(X >

200) = exp(−200/θ). The maximum likelihood estimate is p̂ = exp(−200/θ̂) =
exp(−200/x̄). It is not easy to determine the mean and variance of this quantity, but
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we do know that Var(X̄) = Var(X)/n = θ2/n. Furthermore,

g(θ) = e−200/θ, g′(θ) = 200θ−2e−200/θ,

and therefore the delta method gives

Var(p̂)
.
=

(200θ−2e−200/θ)2θ2

n
=

40,000θ−2e−400/θ

n
.

For Data Set B,

x̄ = 1,424.4,

p̂ = exp

(
− 200

1,424.4

)
= 0.86900,

V̂ar(p̂) =
40,000(1, 424.4)−2 exp(−400/1,424.4)

20
= 0.0007444.

A 95% confidence interval for p is 0.869± 1.96
√

0.0007444, or 0.869± 0.053. �

EXAMPLE 11.11

Construct a 95% confidence interval for the mean of a lognormal population using
Data Set B. Compare this to the more traditional confidence interval based on the
sample mean.

From Example 11.7, we have µ̂ = 6.1379, σ̂ = 1.3894, and an estimated
covariance matrix of

Σ̂

n
=

[
0.0965 0

0 0.0483

]
.

The function is g(µ, σ) = exp(µ+ σ2/2). The partial derivatives are

∂g

∂µ
= exp

(
µ+ 1

2σ
2
)
,

∂g

∂σ
= σ exp

(
µ+ 1

2σ
2
)
,

and the estimates of these quantities are 1,215.75 and 1,689.16, respectively. The delta
method produces the following approximation:

V̂ar[g(µ̂, σ̂)] =
[
1,215.75 1,689.16

] [0.0965 0

0 0.0483

][
1,215.75

1,689.16

]
= 280,444.

The confidence interval is 1,215.75± 1.96
√

280, 444, or 1,215.75± 1,037.96.
The customary confidence interval for a population mean is x̄±1.96s/

√
n, where

s2 is the sample variance. For Data Set B, the interval is 1,424.4±1.96(3,435.04)/
√

20,
or 1,424.4±1,505.47. It is not surprising that this is a wider interval because we know
that (for a lognormal population) the mle is asymptotically UMVUE. �
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11.6.1 Exercises

11.39 Use the delta method to construct a 95% confidence interval for the mean of a
gamma distribution using Data Set B. Preliminary calculations are in Exercise 11.33.

11.40 (*) For a lognormal distribution with parameters µ and σ, you are given that the
maximum likelihood estimates are µ̂ = 4.215 and σ̂ = 1.093. The estimated covariance
matrix of (µ̂, σ̂) is [

0.1195 0

0 0.0597

]
.

The mean of a lognormal distribution is given by exp(µ + σ2/2). Estimate the variance
of the maximum likelihood estimator of the mean of this lognormal distribution using the
delta method.

11.41 This is a continuation of Exercise 11.6. Let x1, . . . , xn be a random sample from a
population with cdf F (x) = xp, 0 < x < 1.

(a) Determine the asymptotic variance of the maximum likelihood estimate of p.

(b) Use your answer to obtain a general formula for a 95% confidence interval for p.

(c) Determine the mle of E(X) and obtain its asymptotic variance and a formula for
a 95% confidence interval.

11.42 This is a continuation of Exercise 11.9. Let x1, . . . , xn be a random sample from a
population with pdf f(x) = θ−1e−x/θ, x > 0.

(a) Determine the asymptotic variance of the mle of θ.

(b) (*) Use your answer to obtain a general formula for a 95% confidence interval for
θ.

(c) Determine the mle of Var(X) and obtain its asymptotic variance and a formula
for a 95% confidence interval.

11.43 (*) Losses have an exponential distribution. Five observations from this distribution
are 100, 200, 400, 800, 1,400, and 3,100. Use the delta method to approximate the variance
of the mle of S(1,500). Then construct a symmetric 95% confidence interval for the true
value.

11.44 Estimate the covariance matrix of the mles for the data in Exercise 11.7 with both α
and θ unknown. Do so by computing approximate derivatives of the loglikelihood. Then
construct a 95% confidence interval for the mean.

11.45 Estimate the variance of the mle for Exercise 11.12 and use it to construct a 95%
confidence interval for E(X ∧ 500).
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11.7 Nonnormal Confidence Intervals

Section 11.5 created confidence intervals based on two assumptions. The first was that the
normal distribution is a reasonable approximation of the true distribution of the maximum
likelihood estimator. We know that this assumption is asymptotically true but may not
hold for small or even moderate samples. Second, it was assumed that when there is
more than one parameter, separate confidence intervals should be constructed for each
parameter. Separate intervals can be used in cases such as the lognormal distribution where
the parameter estimates are independent, but in most cases that is not true. When there is
high correlation, it is better to postulate a confidence region, which could be done using the
asymptotic covariances and a multivariate normal distribution. However, there is an easier
method that does not require a normal distribution assumption (though it is still based on
asymptotic results).

One way to motivate a confidence region is to consider the meaning of the likelihood
function. The parameter value that maximizes this function is our best choice. It is reason-
able that values of the parameter which produce likelihood function values close to the
maximum are good alternative choices for the true parameter value. Thus, for some choice
of c, a confidence region for the parameter might be

{θ : l(θ) ≥ c},

the set of all parameters for which the loglikelihood exceeds c. The discussion of the
likelihood ratio test in Section 15.4.4 confirms that the loglikelihood is the correct function
to use and also indicates how c should be selected to produce a 100(1 − α)% confidence
region. The value is

c = l(θ̂)− 0.5χ2
α,

where the first term is the loglikelihood value at the maximum likelihood estimate and
the second term is the 1 − α percentile from the chi-square distribution, with degrees of
freedom equal to the number of estimated parameters.

EXAMPLE 11.12

Use this method to construct a 95% confidence interval for the parameter of an expo-
nential distribution. Compare the answer to the normal approximation using Data Set B.

We know that θ̂ = x̄ and for a sample of size n, l(x̄) = −n − n ln x̄. With
one degree of freedom, the 95th percentile of the chi-square distribution is 3.84. The
confidence region is{

θ : −nx̄
θ
− n ln θ ≥ −n− n ln x̄− 1.92

}
,

which must be evaluated numerically. For Data Set B, the equation is

−20(1,424.4)

θ
− 20 ln θ ≥ −20− 20 ln(1,424.4)− 1.92,

−28,488

θ
− 20 ln θ ≥ −167.15,

and the solution is 946.85 ≤ θ ≤ 2,285.05.
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For the normal approximation, the asymptotic variance of the maximum likeli-
hood estimate is θ2/n, which happens to be the true variance. Inserting sample values,
the normal confidence interval is

1,424.4± 1.96
√

1,424.42/20,

1,424.4± 624.27,

which is 800.14 ≤ θ ≤ 2,048.76. Note that the widths of the two intervals are
similar, but the first one is not symmetric about the sample mean. This asymmetry is
reasonable in that a sample of size 20 is unlikely to be large enough to have the sample
mean remove the skewness of the underlying exponential distribution. �

The extension to two parameters is similar, as illustrated in Example 11.13.

EXAMPLE 11.13

In Example 11.2, the maximum likelihood estimates for a gamma model for Data Set B
were α̂ = 0.55616 and θ̂ = 2,561.1. Determine a 95% confidence region for the true
values.

The region consists of all pairs (α, θ) that satisfy

(α− 1)

20∑
j=1

lnxj −
1

θ

20∑
j=1

xj − 20 ln Γ(α)− 20α ln θ

≥ (0.55616− 1)

20∑
j=1

lnxj −
1

2,561.1

20∑
j=1

xj − 20 ln Γ(0.55616)

− 20(0.55616) ln 2,561.1− 2.996 = −165.289,

where 2.996 is one-half of the 95th percentile of a chi-square distribution with two
degrees of freedom. Figure 11.1 shows the resulting confidence region. If the normal
approximation were appropriate, this region would be elliptical in shape. �

For functions of parameters, the same method can be applied as illustrated in Example
11.14.

EXAMPLE 11.14

Determine a 95% confidence interval for the mean of the gamma distribution in Example
11.13.

First, reparameterize the gamma density so that the mean is a parameter, which
can be done by setting µ = αθ and leaving α unchanged. The density function is now

f(x) =
xα−1e−xα/µ

Γ(α)(µ/α)α
.

Due to the invariance of mles, we have µ̂ = α̂θ̂ = 1,424.4. We then look for
alternative µ values that produce loglikelihood values that are within 1.92 of the
maximum (there is only one degree of freedom because there is only one parameter,
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Figure 11.1 The 95% confidence region for the gamma parameters.

the mean, being evaluated). When we try a µ-value, to give it the best chance to be
accepted, the accompanying α-value should be the one that maximizes the likelihood
given µ. Numerical maximizations and trial and error reveal the confidence interval
811 ≤ µ ≤ 2,846. �

11.7.1 Exercise

11.46 Using an exponential model, Data Set B, and the method of this section, determine
a 95% confidence interval for the probability that an observation exceeds 200. Compare
your answer to that from Example 11.10.



CHAPTER 11

CHAPTER 11 SOLUTIONS

SECTION 11.2

11.1 For the inverse exponential distribution,

l(θ) =

n∑
j=1

(ln θ − θx−1
j − 2 lnxj) = n ln θ − nyθ − 2

n∑
j=1

lnxj ,

l′(θ) = nθ−1 − ny, θ̂ = y−1, where y =
1

n

n∑
j=1

1

xj
.

For Data Set B, we have θ̂ = 197.72 and the loglikelihood value is −159.78. Because the
mean does not exist for the inverse exponential distribution, there is no traditional method
of moments estimate available. However, it is possible to obtain a method of moments
estimate using the negative first moment rather than the positive first moment, that is, equate
the average reciprocal to the expected reciprocal:

1

n

n∑
j=1

1

xj
= E(X−1) = θ−1.

Student Solutions Manual to Accompany Loss Models: From Data to Decisions, Fifth Edition.
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This special method of moments estimate is identical to the maximum likelihood estimate.
For the inverse gamma distribution with α = 2,

f(x|θ) =
θ2e−θ/x

x3Γ(2)
, ln f(x|θ) = 2 ln θ − θx−1 − 3 lnx,

l(θ) =

n∑
j=1

(2 ln θ − θx−1
j − 3 lnxj) = 2n ln θ − nyθ − 3

n∑
j=1

lnxj ,

l′(θ) = 2nθ−1 − ny, θ̂ = 2/y.

For Data Set B, θ̂ = 395.44 and the value of the loglikelihood function is −169.07. The
method of moments estimate solves the equation

1,424.4 =
θ

α− 1
=

θ

2− 1
, θ̂ = 1,424.4,

which differs from the maximum likelihood estimate.
For the inverse gamma distribution with both parameters unknown,

f(x|θ) =
θαe−θ/x

xα+1Γ(α)
, ln f(x|θ) = α ln θ − θx−1 − (α+ 1) lnx− ln Γ(α).

The likelihood function must be maximized numerically. The answer is α̂ = 0.70888 and
θ̂ = 140.16 and the loglikelihood value is −158.88. The method of moments estimate is
the solution to the two equations

1,424.4 =
θ

α− 1
,

13,238,441.9 =
θ2

(α− 1)(α− 2)
.

Squaring the first equation and dividing it into the second equation gives

6.52489 =
α− 1

α− 2
,

which leads to α̂ = 2.181 and then θ̂ = 1,682.2. This result does not match the maximum
likelihood estimate (which had to be the case, because the mle produces a model that does
not have a mean).

11.2 The density function is the derivative, f(x) = α500αx−α−1. The likelihood function
is

L(α) = α55005α(Πxj)
−α−1,

and its logarithm is

l(α) = 5 lnα+ (5α) ln 500− (α+ 1)Σ lnxj

= 5 lnα+ 31.073α− 33.111(α+ 1).

Setting the derivative equal to zero gives

0 = 5α−1 − 2.038.

The estimate is α̂ = 5/2.038 = 2.45.
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11.3 The coefficient (2πx)−1/2 is not relevant because it does not involve µ. The logarithm
of the likelihood function is

l(µ) = − 1

22
(11−µ)2− 1

30.4
(15.2−µ)2− 1

36
(18−µ)2− 1

42
(21−µ)2− 1

51.6
(25.8−µ)2.

The derivative is

l′(µ) =
11− µ

11
+

15.2− µ
15.2

+
18− µ

18
+

21− µ
21

+
25.8− µ

25.8
= 5− 0.29863µ.

Setting the derivative equal to zero yields µ̂ = 16.74.

11.4 The density function is

f(x) = 0.5x−0.5θ−0.5e−(x/θ)0.5

.

The likelihood function and subsequent calculations are

L(θ) =

10∏
j=1

0.5x−0.5
j θ−0.5e−x

0.5
j θ−0.5

∝ θ−5 exp

(
−θ−0.5

10∑
j=1

x0.5
j

)
= θ−5 exp(−488.97θ−0.5),

l(θ) = −5 ln θ − 488.97θ−0.5,

l′(θ) = −5θ−1 + 244.485θ−1.5 = 0,

0 = −5θ0.5 + 244.485,

and so θ̂ = (244.485/5)2 = 2,391.

11.5 L = 2nθn(Πxj) exp(−θΣx2
j ), l = n ln 2 + n ln θ + Σ lnxj − θΣx2

j , l
′ = nθ−1 −

Σx2
j = 0, and θ̂ = n/Σx2

j .

11.6 f(x) = pxp−1,L = pn(Πxj)
p−1, l = n ln p+(p−1)Σ lnxj , l′ = np−1+Σ lnxj = 0,

and p̂ = −n/Σ lnxj .

11.7 (a) L = (Πxj)
α−1 exp(−Σxj/θ)[Γ(α)]−nθ−nα.

l = (α− 1)Σ lnxj − θ−1Σxj − n ln Γ(α)− nα ln θ

= 81.61837(α− 1)− 38,000θ−1 − 10 ln Γ(α)− 10α ln θ.

∂l/∂θ = 38,000θ−2 − 10αθ−1 = 0,

θ̂ = 38,000/(10 · 12) = 316.67.

(b) l is maximized at α̂ = 6.341 and θ̂ = 599.3 (with l = −86.835).

11.8 µ̂ = 1
5Σ lnxi = 7.33429, σ̂2 = 1

5Σ(lnxi)
2 − 7.334292 = 0.567405, and σ̂ =

0.753263.

Pr(X > 4,500) = 1− Φ[(ln 4,500− 7.33429)/0.753263]

= 1− Φ(1.4305) = 0.076.
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11.9 L = θ−n exp(−Σxj/θ), l = −n ln θ − θ−1Σxj , l′ = −nθ−1 + θ−2Σxj = 0, and
θ̂ = Σxj/n.

11.10 L = β−10(Πxj) exp[−Σx2
j/(2β

2)], l = −10 lnβ + Σ lnxj − Σx2
j/(2β

2), l′ =

−10β−1 + β−3Σx2
j = 0, and β̂ =

√
Σx2

j/10 = 3.20031.

11.11 f(x) = αx−α−1, L = αn(Πxj)
−α−1, l = n lnα − (α + 1)Σ lnxj , l′ = nα−1 −

Σ lnxj = 0, and α̂ = n/Σ lnxj .

11.12
L = α5λ5α[Π(λ+ xj)]

−α−1,

l = 5 lnα+ 5α ln 1,000− (α+ 1)Σ ln(1,000 + xj),

l′ = 5α−1 + 34.5388− 35.8331 = 0,

α̂ = 3.8629.

11.13 (a) Three observations exceed 200. The empirical estimate is 3/20 = 0.15.

(b) E(X) = 100α/(α− 1) = x̄ = 154.5, α̂ = 154.5/54.5 = 2.835, and Pr(X > 200) =
(100/200)2.835 = 0.140.

(c) f(x) = α100αx−α−1 and L = α2010020α(Πxj)
−α−1.

l = 20 lnα+ 20α ln 100− (α+ 1)Σ lnxj ,

l′ = 20α−1 + 20 ln 100− Σ lnxj = 0,

α̂ = 20/(Σ lnxj − 20 ln 100) = 20/(99.125− 92.103) = 2.848.

Pr(X > 200) = (100/200)2.848 = 0.139.

11.14 (a) ∑ (xj − µ)2

xj
=
∑(

xj − 2µ+
µ2

xj

)
=
∑(

µ2

xj
− µ2

x̄

)
+
∑(

µ2

x̄
− 2µ+ xj

)
= µ2

∑(
1

xj
− 1

x̄

)
+
nµ2

x̄
− 2nµ+ nx̄

= µ2
∑(

1

xj
− 1

x̄

)
+
n

x̄
(x̄− µ)2.
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(b)
L ∝ θn/2 exp

[
− θ

2µ2

∑ (xj − µ)2

xj

]
,

l = lnL =
n

2
ln θ − θ

2µ2

∑ (xj − µ)2

xj

=
n

2
ln θ − θ

2µ2

[
µ2
∑(

1

xj
− 1

x̄

)
+
n

x̄
(x̄− µ)2

]
=
n

2
ln θ − θ

2

∑(
1

xj
− 1

x̄

)
− nθ

2µ2x̄
(x̄− µ)2,

∂l

∂µ
= −nθ

2x̄

−µ22(x̄− µ)− (x̄− µ)22µ

µ4
= 0,

µ̂ = x̄.

∂l

∂θ
=

n

2θ
− 1

2

∑(
1

xj
− 1

x̄

)
+

n

2µ2x̄
(x̄− µ)2 = 0,

θ̂ =
n∑(

1
xj
− 1

x̄

) .

11.15
L(µ, θ) =

n∏
j=1

f
[
xj ;µ, (θmj)

−1
]

=

n∏
j=1

(
2π

θmj

)− 1
2

exp

[
− (xj − µ)2mjθ

2

]

∝ θn/2 exp

[
−θ

2

∑
mj(xj − µ)2

]
.

`(µ, θ) =
n

2
ln θ − θ

2

∑
mj(xj − µ)2 + constant,

∂`

∂µ
= θ

∑
mj(xj − µ) = 0⇒ µ̂ =

∑
mjxj∑
mj

=

∑
mjxj
m

,

∂2`

∂µ
= −θ

∑
mj < 0, hence, maximum.

∂`

∂θ
=
n

2

1

θ
− 1

2

∑
mj(xj − µ)2 = 0⇒ θ̂−1 =

1

n

∑
mj(xj − µ̂)2,

θ̂ = n
[∑

mj(xj − x)2
]−1

,

∂2`

∂θ2
= −n

2

1

θ2
< 0, hence, maximum.
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11.16 L(θ) =

n∏
j=1

f(xj ; θ) =

n∏
j=1

p(xj)e
r(θ)xj

q(θ)
,

`(θ) =

n∑
j=1

ln p(xj) + r(θ)

n∑
j=1

xj − n ln q(θ),

`′(θ) = r′(θ)

n∑
j=1

xj − n
q′(θ)

q(θ)
= 0.

Therefore,
q′(θ̂)

r′(θ̂)q(θ̂)
= x.

But,
q′(θ)

r′(θ)q(θ)
= E(X) = µ(θ),

and so µ(θ̂) = x.

SECTION 11.3

11.17 For the inverse exponential distribution, the cdf is F (x) = e−θ/x. Numerical
maximization yields θ̂ = 6,662.39 and the value of the loglikelihood function is −365.40.
For the gamma distribution, the cdf requires numerical evaluation. In Excelr, the function
GAMMA.DIST(x, α, θ,true) can be used. The estimates are α̂ = 0.37139 and θ̂ = 83,020.
The value of the loglikelihood function is −360.50. For the inverse gamma distribution,
the cdf is available in Excelr as 1−GAMMA.DIST(1/x, α, 1/θ,true). The estimates are
α̂ = 0.83556 and θ̂ = 5,113. The value of the loglikelihood function is −363.92.

11.18
L(θ) =

(
1− θ

10

)9(
θ

10
− θ

25

)6(
θ

25

)5

∝ (10− θ)9θ11,

l(θ) = 9 ln(10− θ) + 11 ln(θ),

l′(θ) = − 9

10− θ
+

11

θ
= 0,

9θ = 11(10− θ),
θ = 110/20 = 5.5.

11.19 The maximum likelihood estimate is θ̂ = 93.188.

SECTION 11.4

11.20 In each case, the likelihood function is f(27)f(82) · · · f(243)[1− F (250)]13. Table
11.1 provides the estimates for both the original and censored data sets. The censoring
tended to disguise the true nature of these numbers and, in general, had a large impact on
the estimates.

11.21 The calculations are done as in Example 11.4, but with θ unknown. The likelihood
must be numerically maximized. For the shifted data, the estimates are α̂ = 1.4521 and
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Table 11.1 The estimates for Exercise 11.20.

Model Original Censored

Exponential θ̂ = 1,424.4 θ̂ = 594.14

Gamma α̂ = 0.55616, θ̂ = 2,561.1 α̂ = 1.5183, θ̂ = 295.69

Inverse exponential θ̂ = 197.72 θ̂ = 189.78

Inverse gamma α̂ = 0.70888, θ̂ = 140.16 α̂ = 0.41612, θ̂ = 86.290

θ̂ = 907.98. The two expected costs are 907.98/0.4521 = 2,008 and 1,107.98/0.4521 =
2,451 for the 200 and 400 deductibles, respectively. For the unshifted data, the estimates are
α̂ = 1.4521 and θ̂ = 707.98. The three expected costs are 707.98/0.4521 = 1,566, 2,008,
and 2,451 for the 0, 200, and 400 deductibles, respectively. While it is always the case that
for the Pareto distribution the two approaches produce identical answers, that will not be
true in general.

11.22 Table 11.1 can be used. The only difference is that observations that were surrenders
are now treated as x-values and deaths are treated as y-values. Observations that ended at
5.0 continue to be treated as y-values. Once again, there is no estimate for a Pareto model.
The gamma parameter estimates are α̂ = 1.229 and θ̂ = 6.452.

11.23 The contribution to the likelihood for the first five values (the number of drivers
having zero through four accidents) is unchanged. However, for the last seven drivers, the
contribution is

[Pr(X ≥ 5)]7 = [1− p(0)− p(1)− p(2)− p(3)− p(4)]7,

and the maximum must be obtained numerically. The estimated values are λ̂ = 0.16313 and
q̂ = 0.02039. These answers are similar to those for Example 11.6 because the probability
of six or more accidents is so small.

11.24 We have

L = f(1,100)f(3,200)f(3,300)f(3,500)f(3,900)[S(4,000)]495

= θ−1e−1,100/θθ−1e−3,200/θθ−1e−3,300/θθ−1e−3,500/θ

× θ−1e−3,900/θ[e−4,000/θ]495

= θ−5e−1,995,000/θ,

lnL = − 5 ln θ − 1,995,000

θ
,

d lnL

dθ
= − 5

θ
+

1,995,000

θ2
= 0,

and the solution is θ̂ = 1,995,000/5 = 399,000.

11.25 The survival function is

S(t) =


e−tλ1 , 0 < t < 5,

e−5λ1−(t−5)λ2 , 5 ≤ t < 10,

e−5λ1−5λ2−(t−10)λ3 , t ≥ 10
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and the density function is

f(t) = −S′(t) =


λ1e
−tλ1 , 0 < t < 5,

λ2e
−5λ1−(t−5)λ2 , 5 ≤ t < 10,

λ3e
−5λ1−5λ2−(t−10)λ3 , t ≥ 10.

The likelihood function and its logarithm are

L(λ1, λ2, λ3) = λ1e
−3λ1λ2

2e
−10λ1−5λ2λ4

3e
−20λ1−20λ2−11λ3

× (e−5λ1−5λ2−5λ3)3

= λ1e
−48λ1λ2

2e
−40λ2λ4

3e
−26λ3 ,

lnL(λ1, λ2, λ3) = lnλ1 − 48λ1 + 2 lnλ2 − 40λ2 + 4 lnλ3 − 26λ3.

The partial derivative with respect to λ1 is λ−1
1 − 48 = 0 for λ̂1 = 1/48. Similarly,

λ̂2 = 2/40 and λ̂3 = 4/26.

11.26 The distribution and density function are

F (x) = 1− e−(x/θ)2

, f(x) =
2x

θ2
e−(x/θ)2

.

The likelihood function is

L(θ) = f(20)f(30)f(45)[1− F (50)]2

∝ θ−2e−(20/θ)2

θ−2e−(30/θ)2

θ−2e−(45/θ)2
[
e−(50/θ)2

]2
= θ−6e−8,325/θ2

.

The logarithm and derivative are

l(θ) = −6 ln θ − 8,325θ−2,

l′(θ) = −6θ−1 + 16,650θ−3.

Setting the derivative equal to zero yields θ̂ = (16,650/6)1/2 = 52.68.

11.27 For the exponential distribution, the maximum likelihood estimate is the sample mean,
and so x̄P = 1,000 and x̄S = 1,500. The likelihood with the restriction is (using i to index
observations from Phil’s bulbs and j to index observations from Sylvia’s bulbs)

L(θ∗) =

20∏
i=1

(θ∗)−1 exp(−xi/θ∗)
10∏
j=1

(2θ∗)−1 exp(−xj/2θ∗)

∝ (θ∗)−30 exp

− 20∑
i=1

xi
θ∗
−

10∑
j=1

xj
2θ∗


= (θ∗)−30 exp(−20x̄P /θ

∗ − 10x̄S/2θ
∗)

= (θ∗)−30 exp(−20,000/θ∗ − 7,500/θ∗).
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Taking logarithms and differentiating yields

l(θ∗) = −30 ln θ∗ − 27,500/θ∗,

l′(θ∗) = −30(θ∗)−1 + 27,500(θ∗)−2.

Setting the derivative equal to zero gives θ̂∗ = 27,500/30 = 916.67.

11.28 For the first part,

L(θ) = F (1,000)62[1− F (1,000)]38

= (1− e−1,000/θ)62(e−1,000/θ)38.

Let x = e−1,000/θ. Then,

L(x) = (1− x)62x38,

l(x) = 62 ln(1− x) + 38 lnx,

l′(x) = − 62

1− x
+

38

x
.

Setting the derivative equal to zero yields

0 = −62x+ 38(1− x)

= 38− 100x,

x = 0.38,

and then θ̂ = −1,000/ ln 0.38 = 1,033.50.
With additional information,

L(θ) =

 62∏
j=1

f(xj)

 [1− F (1,000)]38 =

 62∏
j=1

θ−1e−xj/θ

 e−38,000/θ

= θ−62e−28,140/θe−38,000/θ = θ−62e−66,140/θ,

l(θ) = −62 ln θ − 66,140/θ,

l′(θ) = −62/θ + 66,140/θ2 = 0,

0 = −62θ + 66,140,

θ̂ = 66,140/62 = 1,066.77.

11.29 Each observation has a uniquely determined conditional probability. The contribution
to the loglikelihood is given in Table 11.2. The total is l(p) = 3 ln p− 11 ln(1 + p). Setting
the derivative equal to zero gives 0 = l′(p) = 3p−1 − 11(1 + p)−1, and the solution is
p̂ = 3/8.

11.30
L(w) =

1
w

1
w

1
w

(
w− 4− p

w

)2(
w−4
w

)5 =
(w − 4− p)2

(w − 4)5
,

l(w) = 2 ln(w − 4− p)− 5 ln(w − 4),

l′(w) =
2

w − 4− p
− 5

w − 4
= 0,

0 = l′(29) =
2

25− p
− 5

25
,

25− p = 10, p = 15.
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Table 11.2 The likelihood contributions for Exercise 11.29.

Observation Probability Loglikelihood

1997-1 Pr(N =1)
Pr(N =1)+Pr(N =2)

= (1− p)p
(1− p)p+ (1− p)p2 = 1

1+ p
−3 ln(1 + p)

1997-2 Pr(N =2)
Pr(N =1)+Pr(N =2)

= (1− p)p2

(1−p)p+ (1− p)p2 = p
1+ p

ln p− ln(1 + p)

1998-0 Pr(N =0)
Pr(N =0)+Pr(N =1)

= (1− p)
(1− p) + (1− p)p = 1

1+ p
−5 ln(1 + p)

1998-1 Pr(N =1)
Pr(N =0)+Pr(N =1)

= (1− p)p
(1− p) + (1− p)p = p

1+ p
2 ln p− 2 ln(1 + p)

1999-0 Pr(N =0)
Pr(N =0)

= 1 0

11.31 The density function is f(x) = θx−2e−θ/x. The likelihood function is

L(θ) = θ(66−2)e−θ/66θ(91−2)e−θ/91θ(186−2)e−θ/186(e−θ/66)7

∝ θ3e−0.148184θ,

l(θ) = 3 ln θ − 0.148184θ,

l′(θ) = 3θ−1 − 0.148184 = 0,

θ = 3/0.148184 = 20.25.

The mode is θ/2 = 10.125.

11.32

L(α) =

7∏
j=1

f(xj |α)

1− F (100|α)
=

7∏
j=1

α400α

(400+xj)α+1[(
400

400+100

)α]7 ,
l(α) = 7 lnα+ 7α ln 400− (α+ 1)

7∑
j=1

ln(400 + xj)− 7α ln 0.8

= 7 lnα− 3.79α− 47.29,

l′(α) = 7α−1 − 3.79 = 0,

α = 7/3.79 = 1.847.

SECTION 11.5

11.33 In general, for the exponential distribution,

l′(θ) = −nθ−1 + nx̄θ−2,

l′′(θ) = nθ−2 − 2nx̄θ−3,

E[l′′(θ)] = nθ−2 − 2nθθ−3 = −nθ−2,

Var(θ̂) = θ2/n,

where the third line follows from E(X̄) = E(X) = θ. The estimated variance for Data Set
B is V̂ar(θ̂) = 1,424.42/20 = 101,445.77 and the 95% confidence interval is 1,424.4 ±
1.96(101,445.77)1/2, or 1,424.4± 624.27. Note that in this particular case, Theorem 11.4
gives the exact value of the variance, because

Var(θ̂) = Var(X̄) = Var(X)/n = θ2/n.
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For the gamma distribution,

l(α, θ) = (α− 1)

n∑
j=1

lnxj −
n∑
j=1

xjθ
−1 − n ln Γ(α)− nα ln θ,

∂l(α, θ)

∂α
=

n∑
j=1

lnxj −
nΓ′(α)

Γ(α)
− n ln θ,

∂l(α, θ)

∂θ
=

n∑
j=1

xjθ
−2 − nαθ−1,

∂2l(α, θ)

∂α2
= −nΓ(α)Γ′′(α)− Γ′(α)2

Γ(α)2
,

∂2l(α, θ)

∂α∂θ
= −nθ−1,

∂2l(α, θ)

∂θ2
= −2

n∑
j=1

xjθ
−3 + nαθ−2 = −2nx̄θ−3 + nαθ−2.

The first two second partial derivatives do not contain xj , and so the expected value is
equal to the indicated quantity. For the final second partial derivative, E(X̄) = E(X) = αθ.
Therefore,

I(α, θ) =

[
nΓ(α)Γ′′(α)−Γ′(α)2

Γ(α)2 nθ−1

nθ−1 nαθ−2

]
.

The derivatives of the gamma function are available in some better computer packages, but
are not available in Excelr. Use of numerical derivatives of the gamma function yields

I(α̂, θ̂) =

[
82.467 0.0078091

0.0078091 0.0000016958

]
,

and the covariance matrix is [
0.021503 −99.0188

−99.0188 1,045,668

]
.

Numerical second derivatives of the likelihood function (using h1 = 0.00005 and h2 =
0.25) yield

I(α̂, θ̂) =

[
82.467 0.0078091

0.0078091 0.0000016959

]
,

and covariance matrix [
0.021502 −99.0143

−99.0143 1,045,620

]
.

The confidence interval for α is 0.55616± 1.96(0.021502)1/2, or 0.55616± 0.28741, and
for θ it is 2,561.1± 1.96(1,045,620)1/2, or 2,561.1± 2,004.2.

11.34 The density function is f(x|θ) = θ−1, 0 ≤ x ≤ θ. The likelihood function is

L(θ) = θ−n, 0 ≤ x1, . . . , xn ≤ θ
= 0, otherwise.
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As a function of θ, the likelihood function is sometimes 0, and sometimes θ−n. In particular,
it is θ−n only when θ is greater than or equal to all the xs. Equivalently, we have

L(θ) = 0, θ < max(x1, . . . , xn)

= θ−n, θ ≥ max(x1, . . . , xn).

Therefore, the likelihood function is maximized at θ̂ = max(x1, . . . , xn). Note that the
calculus technique of setting the derivative equal to zero does not work here because the
likelihood function is not continuous (and therefore not differentiable) at the maximum.
From Examples 10.5 and 10.9, we know that this estimator is asymptotically unbiased
and consistent, and we have its variance without recourse to Theorem 11.4. According to
Theorem 11.4, we need

l(θ) = −n ln θ, θ ≥ max(x1, . . . , xn),

l′(θ) = −nθ−1, θ ≥ max(x1, . . . , xn),

l′′(θ) = nθ−2, θ ≥ max(x1, . . . , xn).

Then E[l′′(θ)] = nθ−2 because, with regard to the random variables, nθ−2 is a constant and,
therefore, its expected value is itself. The information is then the negative of this number
and must be negative.

With regard to assumption (ii) of Theorem 11.4,∫ θ

0

∂

∂θ

1

θ
dx =

∫ θ

0

−θ−2dx = −1

θ
6= 0.

11.35 The first partial derivatives are

∂l(α, β)

∂α
= −5α− 3β + 50,

∂l(α, β)

∂β
= −3α− 2β + 2.

The second partial derivatives are

∂2l(α, β)

∂α2
= −5,

∂2l(α, β)

∂β2
= −2,

∂2l(α, β)

∂α∂β
= −3,

and so the information matrix is [
5 3

3 2

]
.

The covariance matrix is the inverse of the information, or[
2 −3

−3 5

]
.
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11.36 ln f(x) = −(1/2) ln(2πθ)− x2/(2θ), ∂2 ln f(x)/∂θ2 = (2θ2)−1 − x2(θ3)−1, and
I(θ) = nE[−(2θ2)−1 + X2(θ3)−1] = n(2θ2)−1 since X ∼ N(0, θ). Then MSE(θ̂)

.
=

Var(θ̂)
.
= 2θ2/n

.
= 2θ̂2/n = 8/40 = 0.2.

11.37 (a) L = F (2)[1 − F (2)]3, F (2) =
∫ 2

0
2λxe−λx

2

dx = −e−λx2
∣∣∣2
0

= 1 − e−4λ,

l = ln(1 − e−4λ) − 12λ, ∂l/∂λ = (1 − e−4λ)−14e−4λ − 12 = 0, e−4λ = 3/4, and
λ̂ = (1/4) ln(4/3).

(b) P1(λ) = 1 − e−4λ, P2(λ) = e−4λ, P ′1(λ) = 4e−4λ, P ′2(λ) = −4e−4λ, I(λ) =

4[16e−8λ/(1−e−4λ)+16e−8λ/e−4λ], and V̂ar(λ̂) = {4[16(9/16)/(1/4)+16(9/16)/(3/4)]}−1 =
1/192.

11.38 (a) Let θ = µ/Γ(1 + τ−1). From Appendix A, E(X) = θΓ(1 + τ−1) = µ.

(b) The density function is f(x) = exp
{
−
[

Γ(1 + τ−1)x
µ

]τ}
τ
x

[
Γ(1 + τ−1)x

µ

]τ
, and its loga-

rithm is

ln f(x) = −
[

Γ(1 + τ−1)x

µ

]τ
+ ln τ + τ ln[Γ(1 + τ−1)/µ] + (τ − 1) lnx.

The loglikelihood function is

l(µ) =

n∑
j=1

{
−
[

Γ(1 + τ−1)xj
µ

]τ
+ ln τ + τ ln[Γ(1 + τ−1)/µ] + (τ − 1) lnxj

}
,

and its derivative is

l′(µ) =

n∑
j=1

{
τ

[
Γ(1 + τ−1)xj

]τ
µτ+1

− τ

µ

}
.

Setting the derivative equal to zero, moving the last term to the right-hand side, multiplying
by µ, and dividing by τ produces the equation

n∑
j=1

[
Γ(1 + τ−1)xj

µ

]τ
= n.

Then, [
Γ(1 + τ−1)

µ

]τ n∑
j=1

xτj = n,

[
Γ(1 + τ−1)

n1/τ

]τ n∑
j=1

xτj = µτ ,
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and, finally,

µ̂ = Γ(1 + τ−1)

 n∑
j=1

xτj
n

1/τ

. (11.1)

(c) The second derivative of the loglikelihood function is

l′′(µ) =

n∑
j=1

{
−τ(τ + 1)

[
Γ(1 + τ−1)xj

]τ
µτ+2

+
τ

µ2

}

=
nτ

µ2
− τ(τ + 1)Γ(1 + τ−1)τµ−τ−2

n∑
j=1

xτj .

From (11.1),
∑n
j=1 x

τ
j =

[
n1/τ µ̂

Γ(1 + τ−1)

]τ
and therefore the observed information can be

written as

l′′(µ̂) =
nτ

µ̂2
− τ(τ + 1)Γ(1 + τ−1)τ µ̂−τ−2

[
n1/τ µ̂

Γ(1 + τ−1)

]τ
=
nτ

µ̂2
− τ(τ + 1)n

µ̂2
= −τ

2n

µ̂2
,

and the negative reciprocal provides the variance estimate.

(d) The information requires the expected value ofXτ . From Appendix A, it is θτΓ(1+ τ
τ ) =

θτ = [µ/Γ(1 + τ−1)]τ . Then

E[l′′(µ)] =
nτ

µ2
− τ(τ + 1)Γ(1 + τ−1)τµ−τ−2n[µ/Γ(1 + τ−1)]τ

=
nτ

µ2
− τ(τ + 1)n

µ2
= −τ

2n

µ2
.

Changing the sign, inverting, and substituting µ̂ for µ produces the same estimated variance
as in part (c).

(e) To obtain the distribution of µ̂, first obtain the distribution of Y = Xτ . We have

SY (y) = Pr(Y > y) = Pr(Xτ > y)

= Pr(X > y1/τ )

= exp

{
−
[

Γ(1 + τ−1)y1/τ

µ

]τ}

= exp

{
−
[

Γ(1 + τ−1)

µ

]τ
y

}
,

which is an exponential distribution with mean [µ/Γ(1 + τ−1)]τ . Then
∑n
j=1X

τ
j has a

gamma distribution with parameters n and [µ/Γ(1 + τ−1)]τ . Next, look at

Γ(1 + τ−1)τ

µτ

n∑
j=1

Xτ
j .
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Multiplying by a constant changes the scale parameter, so this variable has a gamma
distribution with parameters n and 1. Now raise this expression to the 1/τ power. Then

Γ(1 + τ−1)

µ

 n∑
j=1

Xτ
j

1/τ

has a transformed gamma distribution with parameters α = n, θ = 1, and τ = τ . To
create µ̂, this function must be multiplied by µ/n1/τ , which changes the scale parameter to
θ = µ/n1/τ . From Appendix A,

E(µ̂) =
µΓ(n+ τ−1)

n1/τΓ(n)
.

A similar argument provides the second moment and then a variance of

Var(µ̂) =
µ2Γ(n+ 2τ−1)

n2/τΓ(n)
− µ2Γ(n+ τ−1)2

n2/τΓ(n)2
.

SECTION 11.6

11.39 From Exercise 11.33, we have α̂ = 0.55616, θ̂ = 2,561.1, and covariance matrix[
0.021503 −99.0188

−99.0188 1,045,668

]
.

The function to be estimated is g(α, θ) = αθ with partial derivatives of θ and α. The
approximated variance is[

2,561.1 0.55616
] [0.021503 −99.0188

−99.0188 1,045,668

][
2,561.1

0.55616

]
= 182,402.

The confidence interval is 1,424.4± 1.96
√

182,402, or 1,424.4± 837.1.

11.40 The partial derivatives of the mean are

∂eµ+σ2/2

∂µ
= eµ+σ2/2 = 123.017,

∂eµ+σ2/2

∂σ
= σeµ+σ2/2 = 134.458.

The estimated variance is then[
123.017 134.458

] [0.1195 0

0 0.0597

][
123.017

134.458

]
= 2,887.73.

11.41 (a) f(x) = pxp−1, ln f(x) = ln p + (p − 1) lnx, ∂2 ln f(x)/∂p2 = −p−2, I(p) =
nE(p−2) = np−2, Var(p̂)

.
= p2/n.
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(b) From Exercise 11.6, p̂ = −n/Σ lnxj . The CI is p̂± 1.96p̂/
√
n.

(c) µ = p/(1 + p), p̂/(1 + p̂), ∂µ/∂p = (1 + p)−2, and Var(µ̂)
.
= (1 + p)−4p2/n. The CI

is p̂(1 + p̂)−1 ± 1.96p̂(1 + p̂)−2/
√
n.

11.42 (a) ln f(x) = − ln θ − x/θ, ∂2 ln f(x)/∂θ2 = θ−2 − 2θ−3x, I(θ) = nE(−θ−2 +

2θ−3X) = nθ−2, and Var(θ̂)
.
= θ2/n.

(b) From Exercise 11.9, θ̂ = x̄. The CI is x̄± 1.96x̄/
√
n.

(c) Var(X) = θ2, ∂Var(X)/∂θ = 2θ, V̂ar(X) = x̄2, and Var[V̂ar(X)]
.
= (2θ)2θ2/n =

4θ4/n. The CI is x̄2 ± 1.96(2x̄2)/
√
n.

11.43 The maximum likelihood estimate is θ̂ = x̄ = 1,000. Var(θ̂) = Var(x̄) = θ2/6. The
quantity to be estimated is S(θ) = e−1,500/θ, and then

S′(θ) = 1,500θ−2e−1,500/θ.

From the delta method,

Var[S(θ̂)] = [S′(θ̂)]2Var(θ̂)

= [1,500(1,000)−2e−1,500/1,000]2(1,0002/6) = 0.01867.

The standard deviation is 0.13664 and with S(1,500) = 0.22313, the confidence interval
is 0.22313 ± 1.96(0.13664), or 0.22313 ± 0.26781. An alternative that does not use the
delta method is to start with a confidence interval for θ: 1,000± 1.96(1,000)/

√
6, which is

1,000± 800.17. Putting the endpoints into S(θ) produces the interval 0.00055 to 0.43463.

11.44 The loglikelihood function is l = 81.61837(α − 1) − 38,000θ−1 − 10 ln Γ(α) −
10α ln θ. Also, α̂ = 6.341 and θ̂ = 599.3. Using v = 4, we have

∂2l(α, θ)

∂α2

.
=
l(6.3416341, 599.3)− 2l(6.341, 599.3) + l(6.3403659, 599.3)

(0.0006341)2

= −1.70790,

∂2l(α, θ)

∂α∂θ

.
=

l(6.34131705, 599.329965)− l(6.34131705, 599.270035)

−l(6.34068295, 599.329965) + l(6.34068295, 599.270035)

(0.0006341)(0.05993)

= 0.0166861,

∂2l(α, θ)

∂θ2

.
=
l(6.341, 599.35993)− 2l(6.341, 599.3) + l(6.341, 599.25007)

(0.05993)2

= −0.000176536,



SECTION 11.7 121

I(α̂, θ̂) =

[
1.70790 0.0166861

0.0166861 0.000176536

]
,

and its inverse is

V̂ar =

[
7.64976 −723.055

−723.055 74,007.7

]
.

The mean is αθ, and so the derivative vector is
[
599.3 6.341

]
. The variance of α̂θ is

estimated as 227,763 and a 95% CI is 3,800± 1.97
√

227,763 = 3,800± 935.

11.45 α̂ = 3.8629. ln f(x) = lnα+α lnλ− (α+ 1) ln(λ+x). ∂2 ln f(x)/∂α2 = −α−2.
I(α) = nα−2. Var(α̂)

.
= α2/n. Inserting the estimate gives 2.9844.

E(X ∧ 500) =

∫ 500

0

xα1,000α(1,000 + x)−α−1dx

+ 500

∫ ∞
500

α1,000α(1,000 + x)−α−1dx

=
1,000

α− 1
− (2/3)α

1,500

α− 1
.

Evaluated at α̂, it is 239.88. The derivative with respect to α is

− 1,000

(α− 1)2
+ (2/3)α

1,500

(α− 1)2
− (2/3)α

1,500

α− 1
ln(2/3),

which is −39.428 when evaluated at α̂. The variance of the LEV estimator is (−39.4298)2

(2.9844) = 5,639.45, and the CI is 239.88± 133.50.

SECTION 11.7

11.46 The likelihood function is L(θ) = θ−20e−28,488/θ. Then l(θ) = −20 ln(θ) −
28,488/θ. With θ̂ = 1,424.4, l(θ̂) = −165.23. A 95% confidence region solves l(θ) =
−165.23−1.92 = −167.15. The solutions are 946.87 and 2,285.07. Inserting the solutions
in S(200) = e−200/θ produces the interval 0.810 to 0.916. The symmetric interval was
0.816 to 0.922.
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CONSTRUCTION OF EMPIRICAL MODELS

14.1 The Empirical Distribution

The material presented here has traditionally been presented under the heading of “survival
models,” with the accompanying notion that the techniques are useful only when studying
lifetime distributions. Standard texts on the subject, such as Klein and Moeschberger
[14] and Lawless [16], contain examples that are exclusively oriented in that direction.
However, the same problems that occur when modeling lifetime occur when modeling
payment amounts. The examples we present are of both types. However, the latter sections
focus on special considerations when constructing decrement models. Only a handful of
references are presented, most of the results being well developed in the survival models
literature. If you want more detail and proofs, consult a text dedicated to the subject, such
as the ones just mentioned.

In Chapter 4, models were divided into two types – data-dependent and parametric.
The definitions are repeated here.

Definition 14.1 A data-dependent distribution is at least as complex as the data or knowl-
edge that produced it, and the number of “parameters” increases as the number of data
points or amount of knowledge increases.

Loss Models: From Data to Decisions, Fifth Edition.
Stuart A. Klugman, Harry H. Panjer, and Gordon E. Willmot.
c© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Companion website: www.wiley.com/go/klugman/lossmodels5e
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Table 14.1 Data Set B.

27 82 115 126 155 161 243 294 340 384

457 680 855 877 974 1,193 1,340 1,884 2,558 15,743

Table 14.2 Data Set C.

Payment range Number of payments

0–7,500 99

7,500–17,500 42

17,500–32,500 29

32,500–67,500 28

67,500–125,000 17

125,000–300,000 9

Over 300,000 3

Definition 14.2 A parametric distribution is a set of distribution functions, each member
of which is determined by specifying one or more values called parameters. The number
of parameters is fixed and finite.

This chapter will focus on data-dependent distributions as models, making few, if
any, assumptions about the underlying distribution. To fix the most important concepts, we
begin by assuming that we have a sample of n observations that are an independent and
identically distributed sample from the same (unspecified) continuous distribution. This is
referred to as a complete data situation. In that context, we have the following definition.

Definition 14.3 The empirical distribution is obtained by assigning probability 1/n to
each data point.

When observations are collected from a probability distribution, the ideal situation
is to have the (essentially) exact1 value of each observation. This case is referred to as
complete, individual data and applies to Data Set B, introduced in Chapter 10 and repro-
duced here as Table 14.1. There are two reasons why exact data may not be available. One
is grouping, in which all that is recorded is the range of values in which the observation
belongs. Grouping applies to Data Set C and to Data Set A for those with five or more acci-
dents. These data sets were introduced in Chapter 10 and are reproduced here as Tables
14.2 and 14.3, respectively.

A second reason that exact values may not be available is the presence of censoring
or truncation. When data are censored from below, observations below a given value are
known to be below that value but the exact value is unknown. When data are censored
from above, observations above a given value are known to be above that value but the
exact value is unknown. Note that censoring effectively creates grouped data. When the
data are grouped in the first place, censoring has no effect. For example, the data in Data
Set C may have been censored from above at 300,000, but we cannot know for sure from

1Some measurements are never exact. Ages may be rounded to the nearest whole number, monetary amounts to
the nearest dollar, car mileage to the nearest mile, and so on. This text is not concerned with such rounding errors.
Rounded values will be treated as if they are exact.
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Table 14.3 Data Set A.

Number of accidents Number of drivers

0 81,714

1 11,306

2 1,618

3 250

4 40

5 or more 7

the data set and that knowledge has no effect on how we treat the data. In contrast, were
Data Set B to be censored at 1,000, we would have 15 individual observations and then
five grouped observations in the interval from 1,000 to infinity.

In insurance settings, censoring from above is fairly common. For example, if a policy
pays no more than 100,000 for an accident, any time the loss is above 100,000 the actual
amount will be unknown, but we will know that it happened. Note that Data Set A has
been censored from above at 5. This is more common language than saying that Data Set
A has some individual data and some grouped data. When studying mortality or other
decrements, the study period may end with some individuals still alive. They are censored
from above in that we know the death will occur sometime after their age when the study
ends.

When data are truncated from below, observations below a given value are not recorded.
Truncation from above implies that observations above a given value are not recorded. In
insurance settings, truncation from below is fairly common. If an automobile physical
damage policy has a per-claim deductible of 250, any losses below 250 will not come to
the attention of the insurance company and so will not appear in any data sets. Data sets
may have truncation forced on them. For example, if Data Set B were to be truncated from
below at 250, the first seven observations would disappear and the remaining 13 would
be unchanged. In decrement studies it is unusual to observe individuals from birth. If
someone is first observed at, say, age 20, that person is from a population where anyone
who died before age 20 would not have been observed and thus is truncated from below.

As noted in Definition 14.3, the empirical distribution assigns probability 1/n to each
data point. That definition works well when the value of each data point is recorded. An
alternative definition follows.

Definition 14.4 The empirical distribution function is

Fn(x) =
number of observations ≤ x

n
,

where n is the total number of observations.

EXAMPLE 14.1

Provide the empirical probability functions for the data in Data Sets A and B. For Data
Set A, also provide the empirical distribution function. For Data Set A, assume that
all seven drivers who had five or more accidents had exactly five accidents.
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For notation, a subscript of the sample size (or of n if the sample size is not
known) is used to indicate an empirical function. Without the subscript, the function
represents the true function for the underlying random variable. For Data Set A, the
empirical probability function is

p94,935(x) =



81,714/94,935 = 0.860736, x = 0,

11,306/94,935 = 0.119092, x = 1,

1,618/94,935 = 0.017043, x = 2,

250/94,935 = 0.002633, x = 3,

40/94,935 = 0.000421, x = 4,

7/94,935 = 0.000074, x = 5,

where the values add to 0.999999 due to rounding. The empirical distribution function
is a step function with jumps at each data point.

F94,935(x) =



0/94,935 = 0.000000, x < 0,

81,714/94,935 = 0.860736, 0 ≤ x < 1,

93,020/94,935 = 0.979828, 1 ≤ x < 2,

94,638/94,935 = 0.996872, 2 ≤ x < 3,

94,888/94,935 = 0.999505, 3 ≤ x < 4,

94,928/94,935 = 0.999926, 4 ≤ x < 5,

94,935/94,935 = 1.000000, x ≥ 5.

For Data Set B,

p20(x) =



0.05, x = 27,

0.05, x = 82,

0.05, x = 115,
...

...
0.05, x = 15,743.

�

In the following example, not all values are distinct.

EXAMPLE 14.2

Consider a data set containing the numbers 1.0, 1.3, 1.5, 1.5, 2.1, 2.1, 2.1, and 2.8.
Determine the empirical distribution function.
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The empirical distribution function is a step function with the following values:

F8(x) =



0, x < 1.0,

1− 7
8 = 0.125, 1.0 ≤ x < 1.3,

1− 6
8 = 0.250, 1.3 ≤ x < 1.5,

1− 4
8 = 0.500, 1.5 ≤ x < 2.1,

1− 1
8 = 0.875, 2.1 ≤ x < 2.8,

1, x ≥ 2.8. �

To assess the quality of the estimate, we examine statistical properties, in particular, the
mean and variance. Working with the empirical estimate of the distribution function is
straightforward. To see that with complete data the empirical estimator of the survival
function is unbiased and consistent, recall that the empirical estimate of F (x) is Fn(x) =
Y/n, where Y is the number of observations in the sample that are less than or equal to x.
Then Y must have a binomial distribution with parameters n and F (x) and

E[Fn(x)] = E
(
Y

n

)
=
nF (x)

n
= F (x).

demonstrating that the estimator is unbiased. The variance is

Var[Fn(x)] = Var

(
Y

n

)
=
F (x)[1− F (x)]

n
,

which has a limit of zero, thus verifying consistency.
To make use of the result, the best we can do for the variance is estimate it. It is

unlikely that we will know the value of F (x), because that is the quantity we are trying to
estimate. The estimated variance is given by

V̂ar[Fn(x)] =
Fn(x)[1− Fn(x)]

n
. (14.1)

The same results hold for empirically estimated probabilities. Let p = Pr(a < X ≤ b).
The empirical estimate of p is p̂ = Fn(b) − Fn(a). Arguments similar to those used for
Fn(x) verify that p̂ is unbiased and consistent, with Var(p̂) = p(1− p)/n.

EXAMPLE 14.3

For the data in Example 14.2, estimate the variance of F8(1.4).

From the example, we have F8(1.4) = 0.25. From (14.1),

V̂ar[F8(1.4)] =
F8(1.4)[1− F8(1.4)]

8
=

0.25(1− 0.25)

8
= 0.02344.

�
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14.2 Empirical Distributions for Grouped Data

For grouped data as in Data Set C, construction of the empirical distribution as defined
previously is not possible. However, it is possible to approximate the empirical distribution.
The strategy is to obtain values of the empirical distribution function wherever possible
and then connect those values in some reasonable way. For grouped data, the distribution
function is usually approximated by connecting the points with straight lines. For notation,
let the group boundaries be c0 < c1 < · · · < ck, where often c0 = 0 and ck = ∞. The
number of observations falling between cj−1 and cj is denoted nj , with

∑k
j=1 nj = n. For

such data, we are able to determine the empirical distribution at each group boundary. That
is, Fn(cj) = (1/n)

∑j
i=1 ni. Note that no rule is proposed for observations that fall on a

group boundary. There is no correct approach, but whatever approach is used, consistency
in assignment of observations to groups should be used. Note that in Data Set C it is not
possible to tell how the assignments were made. If we had that knowledge, it would not
affect any subsequent calculations.2

Definition 14.5 For grouped data, the distribution function obtained by connecting the
values of the empirical distribution function at the group boundaries with straight lines is
called the ogive. The formula is as follows:

Fn(x) =
cj − x

cj − cj−1
Fn(cj−1) +

x− cj−1

cj − cj−1
Fn(cj), cj−1 ≤ x ≤ cj .

This function is differentiable at all values except group boundaries. Therefore the
density function can be obtained. To completely specify the density function, it is arbi-
trarily made right continuous.

Definition 14.6 For grouped data, the empirical density function can be obtained by differ-
entiating the ogive. The resulting function is called a histogram. The formula is as
follows:

fn(x) =
Fn(cj)− Fn(cj−1)

cj − cj−1
=

nj
n(cj − cj−1)

, cj−1 ≤ x < cj .

Many computer programs that produce histograms actually create a bar chart with bar
heights proportional to nj/n. A bar chart is acceptable if the groups have equal width, but
if not, then the preceding formula is needed. The advantage of this approach is that the
histogram is indeed a density function and, among other things, areas under the histogram
can be used to obtain empirical probabilities.

EXAMPLE 14.4

Construct the ogive and histogram for Data Set C.

2Technically, for the interval from cj−1 to cj , x = cj should be included and x = cj−1 excluded in order for
Fn(cj) to be the empirical distribution function.
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Figure 14.1 The ogive for general liability losses.

The distribution function is as follows:

F227(x) =



0.000058150x, 0 ≤ x ≤ 7,500,

0.29736 + 0.000018502x, 7,500 ≤ x ≤ 17,500,

0.47210 + 0.000008517x, 17,500 ≤ x ≤ 32,500,

0.63436 + 0.000003524x, 32,500 ≤ x ≤ 67,500,

0.78433 + 0.000001302x, 67,500 ≤ x ≤ 125,000,

0.91882 + 0.000000227x, 125,000 ≤ x ≤ 300,000,

undefined, x > 300,000,

where, for example, for the range 32,500 ≤ x ≤ 67,500, the calculation is

F227(x) =
67,500− x

67,500− 32,500

170

227
+

x− 32,500

67,500− 32,500

198

227
.

The value is undefined above 300,000 because the last interval has a width of infinity.
A graph of the ogive for values up to 125,000 appears in Figure 14.1. The derivative
is simply a step function with the following values:

f227(x) =



0.000058150, 0 ≤ x < 7,500,

0.000018502, 7,500 ≤ x < 17,500,

0.000008517, 17,500 ≤ x < 32,500,

0.000003524, 32,500 ≤ x < 67,500,

0.000001302, 67,500 ≤ x < 125,000,

0.000000227, 125,000 ≤ x < 300,000,

undefined, x ≥ 300,000.

A graph of the function up to 125,000 appears in Figure 14.2. �

14.2.1 Exercises

14.1 Construct the ogive and histogram for the data in Table 14.4.
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Figure 14.2 The histogram of general liability losses.

Table 14.4 The data for Exercise 14.1.

Payment range Number of payments

0–25 6

25–50 24

50–75 30

75–100 31

100–150 57

150–250 80

250–500 85

500–1,000 54

1,000–2,000 15

2,000–4,000 10

Over 4,000 0

14.2 (*) The following 20 windstorm losses (in millions of dollars) were recorded in one
year:

1 1 1 1 1 2 2 3 3 4

6 6 8 10 13 14 15 18 22 25

(a) Construct an ogive based on using class boundaries at 0.5, 2.5, 8.5, 15.5, and 29.5.

(b) Construct a histogram using the same boundaries as in part (a).

14.3 The data in Table 14.5 are from Herzog and Laverty [8]. A certain class of 15-year
mortgages was followed from issue until December 31, 1993. The issues were split into
those that were refinances of existing mortgages and those that were original issues. Each
entry in the table provides the number of issues and the percentage of them that were still
in effect after the indicated number of years. Draw as much of the two ogives (on the same
graph) as is possible from the data. Does it appear from the ogives that the lifetime variable
(the time to mortgage termination) has a different distribution for refinanced versus original
issues?
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Table 14.5 The data for Exercise 14.3.

Refinances Original

Years Number issued Survived Number issued Survived

1.5 42,300 99.97 12,813 99.88

2.5 9,756 99.82 18,787 99.43

3.5 1,550 99.03 22,513 98.81

4.5 1,256 98.41 21,420 98.26

5.5 1,619 97.78 26,790 97.45

Table 14.6 The data for Exercise 14.4.

Loss Number of observations

0–2 25

2–10 10

10–100 10

100–1,000 5

14.4 (*) The data in Table 14.6 were collected (the units are millions of dollars). Construct
the histogram.

14.5 (*) Forty losses have been observed. Sixteen losses are between 1 and 4
3 (in millions),

and the sum of the 16 losses is 20. Ten losses are between 4
3 and 2, with a total of 15. Ten

more are between 2 and 4, with a total of 35. The remaining four losses are greater than 4.
Using the empirical model based on these observations, determine E(X ∧ 2).

14.6 (*) A sample of size 2,000 contains 1,700 observations that are no greater than 6,000,
30 that are greater than 6,000 but no greater than 7,000, and 270 that are greater than 7,000.
The total amount of the 30 observations that are between 6,000 and 7,000 is 200,000. The
value of E(X ∧ 6,000) for the empirical distribution associated with these observations is
1,810. Determine E(X ∧ 7,000) for the empirical distribution.

14.7 (*) A random sample of unknown size produced 36 observations between 0 and 50; x
between 50 and 150; y between 150 and 250; 84 between 250 and 500; 80 between 500 and
1,000; and none above 1,000. Two values of the ogive constructed from these observations
are Fn(90) = 0.21 and Fn(210) = 0.51. Determine the value of x.

14.8 The data in Table 14.7 are from Hogg and Klugman [9, p. 128]. They represent
the total damage done by 35 hurricanes between the years 1949 and 1980. The losses have
been adjusted for inflation (using the Residential Construction Index) to be in 1981 dollars.
The entries represent all hurricanes for which the trended loss was in excess of 5,000,000.

The federal government is considering funding a program that would provide 100%
payment for all damages for any hurricane causing damage in excess of 5,000,000. You
have been asked to make some preliminary estimates.
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Table 14.7 Trended hurricane losses.

Year Loss (103) Year Loss (103) Year Loss (103)

1964 6,766 1964 40,596 1975 192,013

1968 7,123 1949 41,409 1972 198,446

1971 10,562 1959 47,905 1964 227,338

1956 14,474 1950 49,397 1960 329,511

1961 15,351 1954 52,600 1961 361,200

1966 16,983 1973 59,917 1969 421,680

1955 18,383 1980 63,123 1954 513,586

1958 19,030 1964 77,809 1954 545,778

1974 25,304 1955 102,942 1970 750,389

1959 29,112 1967 103,217 1979 863,881

1971 30,146 1957 123,680 1965 1,638,000

1976 33,727 1979 140,136

(a) Estimate the mean, standard deviation, coefficient of variation, and skewness for
the population of hurricane losses.

(b) Estimate the first and second limited moments at 500,000,000.

14.9 (*) There have been 30 claims recorded in a random sampling of claims. There were
2 claims for 2,000, 6 for 4,000, 12 for 6,000, and 10 for 8,000. Determine the empirical
skewness coefficient.

14.3 Empirical Estimation with Right Censored Data

In this section, we generalize the empirical approach of the previous section to situations
in which the data are not complete. In particular, we assume that individual observations
may be right censored. We have the following definition.

Definition 14.7 An observation is censored from above (also called right censored) at u
if when it is at or above u it is recorded as being equal to u, but when it is below u it is
recorded at its observed value.

In insurance claims data, the presence of a policy limit may give rise to right censored
observations. When the amount of the loss equals or exceeds the limit u, benefits beyond
that value are not paid, and so the exact value is typically not recorded. However, it is
known that a loss of at least u has occurred.

When carrying out a study of the mortality of humans, if a person is alive when the
study ends, right censoring has occurred. The person’s age at death is not known, but it
is known that it is at least as large as the age when the study ended. Right censoring also
affects those who exit the study prior to its end due to surrender or lapse. Note that this
discussion could have been about other decrements, such as disability, policy surrender, or
retirement.

For this section and the next two, we assume that the underlying random variable has
a continuous distribution. While data from discrete random variables can also be right
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censored (Data Set A is an example), the use of empirical estimators is rare and thus the
development of analogous formulas is unlikely to be worth the effort.

We now make specific assumptions regarding how the data are collected and recorded.
It is assumed that we have a random sample for which some (but not all) of the data are
right censored. For the uncensored (i.e. completely known) observations, we will denote
their k unique values by y1 < y2 < · · · < yk. We let si denote the number of times that
yi appears in the sample. We also set y0 as the minimum possible value for an observation
and assume that y0 < y1. Often, y0 = 0. Similarly, set ymax as the largest observation in
the data, censored or uncensored. Hence, ymax ≥ yk. Our goal is to create an empirical
(data-dependent) distribution that places probability at the values y1 < y2 < · · · < yk.

We often possess the specific value at which an observation was censored. However,
for both the derivation of the estimator and its implementation, it is only necessary to
know between which y-values it occurred. Thus, the only input needed is bi, the number
of right censored observations in the interval [yi, yi+1) for i = 1, 2, . . . , k − 1. We make
the assumption that if an observation is censored at yi, then the observation is censored at
yi + 0 (i.e. in the lifetime situation, immediately after the death). It is possible to have
censored observations at values between y0 and y1. However, because we are placing
probability only at the uncensored values, these observations provide no information about
those probabilities and so can be dropped. When referring to the sample size, n will denote
the number of observations after these have been dropped. Observations censored at yk or
above cannot be ignored. Let bk be the number of observations right censored at yk + 0 or
later. Note that if bk = 0, then ymax = yk.

The final important quantity is ri, referred to as the number “at risk” at yi. When
thinking in terms of a mortality study, the risk set comprises the individuals who are under
observation at that age. Included are all who die at that age or later and all who are censored
at that age or later. Formally, we have the following definition.

Definition 14.8 The number at risk, ri at observation yi is

ri =

{
n, i = 1

ri−1 − si−1 − bi−1, i = 2, 3, . . . , k + 1.

This formula reflects the fact that the number at risk at yi is that at yi−1 less the
si−1 exact observations at yi−1 and the bi−1 censored observations in [yi−1, yi). Note that
bk = rk − sk and hence rk+1 = 0.

The following numerical example illustrates these ideas.

EXAMPLE 14.5

Determine the numbers at risk for the data in Table 14.8. Observations marked with
an asterisk (*) were censored at that value.

The first step is to summarize the data using previously defined notation. The
summarized values and risk set calculations appear in Table 14.9. Addition of the
values in the s and b columns confirms that there are n = 20 observations. Thus,
r1 = n = 20. Had only this table been available, the fact that b7 = 1 would have
implied that there is one censored value larger than 12, the largest observed value.
The value ymax = 15 indicates that this observation was censored at 15.



306 CONSTRUCTION OF EMPIRICAL MODELS

Table 14.8 The raw data for Example 14.5.

1 2 3* 4 4 4* 4* 5 7* 8

8 8 9 9 9 9 10* 12 12 15*

Table 14.9 The data for Example 14.5.

i yi si bi ri

0 0 — — —

1 1 1 0 20

2 2 1 1 20− 1− 0 = 19

3 4 2 2 19− 1− 1 = 17

4 5 1 1 17− 2− 2 = 13

5 8 3 0 13− 1− 1 = 11

6 9 4 1 11− 3− 0 = 8

7 12 2 1 8− 4− 1 = 3

max 15 — — 3− 2− 1 = 0

As noted earlier, calculation of the risk set does not require the exact values of
the censored observations, only the interval in which they fall. For example, had the
censored observation of 7 been at 6, the resulting numbers at risk would not change
(because b4 would still equal one). �

It should be noted that if there is no censoring, so that bi = 0 for all i, then the data are
complete and the techniques of Section 14.1 may be used. As such, the approach of this
section may be viewed as a generalization.

We shall now present a heuristic derivation of a well-known generalization of the
empirical distribution function. This estimator is referred to as either the Kaplan–Meier
or the product limit estimator.

To proceed, we first present some basic facts regarding the distribution of a discrete
random variable Y , say, with support on the points y1 < y2 < · · · < yk. Let p(yj) =
Pr(Y = yj), and then the survival function is (where i|yi > y means to take the sum or
product over all values of i where yi > y)

S(y) = Pr(Y > y) =
∑
i|yi>y

p(yi).

Setting y = yj for j < k, we have

S(yj) =

k∑
i=j+1

p(yi),

and S(yk) = 0. We also have S(y0) = 1 from the definition of y0.

Definition 14.9 The discrete failure rate function is

h(yj) = Pr(Y = yj |Y ≥ yj) = p(yj)/S(yj−1), j = 1, 2, . . . , k.
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Thus,

h(yj) =
S(yj−1)− S(yj)

S(yj−1)
= 1− S(yj)

S(yj−1)
,

implying that S(yj)/S(yj−1) = 1− h(yj). Hence,

S(yj) =
S(yj)

S(y0)
=

j∏
i=1

S(yi)

S(yi−1)
=

j∏
i=1

[1− h(yi)].

Also, p(y1) = h(y1), and for j = 2, 3, . . . , k,

p(yj) = h(yj)S(yj−1) = h(yj)

j−1∏
i=1

[1− h(yi)].

The heuristic derivation proceeds by viewing λj = h(yj) for j = 1, 2, . . . , k as
unknown parameters, and estimating them by a nonparametric “maximum likelihood” bsed
argument.3 For a more detailed discussion, see Lawless [16]. For the present data, the sj
uncensored observations at yj each contribute p(yj) to the likelihood where p(y1) = λ1

and

p(yj) = λj

j−1∏
i=1

(1− λi), j = 2, 3, . . . , k.

Each of the bj censored observations contributes

S(yj) =

j∏
i=1

(1− λi), j = 1, 2, . . . , k − 1,

to the likelihood (recall that S(y) = S(yj) for yj ≤ y < yj+1), and the bk censored

observations at or above yk each contribute S(yk) =
k∏
i=1

(1− λi).

The likelihood is formed by taking products over all contributions (assuming inde-
pendence of all data points), namely

L (λ1, λ2, . . . , λk) =

k∏
j=1

{
[p(yj)]

sj [S(yj)]
bj
}
,

which, in terms of the λjs, becomes

L(λ1, λ2, . . . , λk) = λs11


k∏
j=2

[
λj

j−1∏
i=1

(1− λi)

]sj
k∏
j=1

[
j∏
i=1

(1− λi)

]bj

=

 k∏
j=1

λ
sj
j

 k∏
j=2

j−1∏
i=1

(1− λi)sj
 k∏
j=1

j∏
i=1

(1− λi)bj

=

 k∏
j=1

λ
sj
j

k−1∏
i=1

k∏
j=i+1

(1− λi)sj
 k∏
i=1

k∏
j=i

(1− λi)bj ,

3Maximum likelihood estimation is covered in Chapter 11. Candidates preparing for the Society of Actuaries
Long-Term Actuarial Mathematics exam will not be tested on the method itself, but only the estimators presented
in this chapter.
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where the last line follows by interchanging the order of multiplication in each of the two
double products. Thus,

L(λ1, λ2, . . . , λk) =

 k∏
j=1

λ
sj
j

 (1− λk)
bk
k−1∏
i=1

(1− λi)
bi+

k∑
m=i+1

(sm+bm)

=

 k∏
j=1

λ
sj
j

 (1− λk)
bk
k−1∏
i=1

(1− λi)
bi+

k∑
m=i+1

(rm−rm+1)

=

 k∏
j=1

λ
sj
j

 (1− λk)
rk−sk

k−1∏
i=1

(1− λi)bi+ri+1−rk+1 .

Observe that rk+1 = 0 and bi + ri+1 = ri − si. Hence,

L (λ1, λ2, . . . , λk) =

 k∏
j=1

λ
sj
j

 (1− λk)
rk−sk

k−1∏
i=1

(1− λi)ri−si

=

k∏
j=1

λ
sj
j (1− λj)rj−sj .

This likelihood has the appearance of a product of binomial likelihoods. That is,
this is the same likelihood as if s1, s2, . . . , sk were realizations of k independent binomial
observations with parameters m = rj and q = λj . The “maximum likelihood estimate”
λ̂j of λj is obtained by taking logarithms, namely

l(λ1, λ2, . . . , λk) = lnL(λ1, λ2, . . . , λk) =

k∑
j=1

[sj lnλj + (rj − sj) ln(1− λj)] ,

implying that
∂l

∂λj
=
sj
λj
− rj − sj

1− λj
, j = 1, 2, . . . , k.

Equating this latter expression to zero yields λ̂j = sj/rj .
For y = yk, the Kaplan–Meier [12] estimate Sn(y) of S(y) is obtained by replacing

λj by λ̂j = sj/rj wherever it appears. Noting that S(y) = S(yj) for yj ≤ y < yj+1, it
follows that

Sn(y) =


1, y < y1,
j∏
i=1

(
1− λ̂i

)
=

j∏
i=1

(
1− si

ri

)
, yj ≤ y < yj+1, j = 1, 2, . . . , k − 1,

k∏
i=1

(
1− λ̂i

)
=

k∏
i=1

(
1− si

ri

)
, yk ≤ y < ymax.

This may be written more succinctly as Sn(y) =
∏

i|yi≤y
(1 − λ̂i) for y < ymax. When

ymax = yk, you should interpret yk ≤ y < ymax as y = yk.
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Table 14.10 The Kaplan–Meier estimates for Example 14.6.

i yi si ri Ŝn(yi)

1 1 1 20 1− 1/20 = 0.950

2 2 1 19 0.95(1− 1/19) = 0.900

3 4 2 17 0.9(1− 2/17) = 0.794

4 5 1 13 0.794(1− 1/13) = 0.733

5 8 3 11 0.733(1− 3/11) = 0.533

6 9 4 8 0.533(1− 4/8) = 0.267

7 12 2 3 0.267(1− 2/3) = 0.089

EXAMPLE 14.6

Construct the Kaplan–Meier estimate of S(y) using the data in Example 14.5. Indicate
how the answer would change if s7 = 3 and b7 = 0.

The calculations appear in Table 14.10. The estimated survival function is

S20(y) =



= 1, y < 1,

= 0.950, 1 ≤ y < 2,

= 0.900, 2 ≤ y < 4,

= 0.794, 4 ≤ y < 5,

= 0.737, 5 ≤ y < 8,

= 0.533, 8 ≤ y < 9,

= 0.167, 9 ≤ y < 12,

= 0.089, 12 ≤ y < 15.

With the change in values, we have ymax = y7 = 12 and S20(y) = 0.267(1 −
3/3) = 0 for y = 12. �

We now discuss estimation for y ≥ ymax. First, note that if sk = rk (no censored obser-
vations at yk), then Sn(yk) = 0 and Sn(y) = 0 for y ≥ yk is clearly the (only) obvious
choice. However, if Sn(yk) > 0, as in the previous example, there are no empirical data to
estimate S(y) for y ≥ ymax, and tail estimates for y ≥ ymax (often called tail corrections)
are needed. There are three popular extrapolations:

Efron’s tail correction [7] assumes that Sn(y) = 0 for y ≥ ymax.

Klein and Moeschberger [14, p. 118] assume that Sn(y) = Sn(yk) for yk ≤ y <
γ and Sn(y) = 0 for y ≥ γ, where γ > ymax is a plausible upper limit for the
underlying random variable. For example, in a study of human mortality, the limit
might be 120 years.

Brown, Hollander, and Korwar’s exponential tail correction [3] assumes that
Sn(ymax) = Sn(yk) and that Sn(y) = e−β̂y for y ≥ ymax. With y = ymax,
β̂ = − lnSn(yk)/ymax, and thus

Sn(y) = ey[lnSn(yk)]/ymax = [Sn(yk)]
y/ymax , y ≥ ymax.
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EXAMPLE 14.7

Apply all three tail correction methods to the data used in Example 14.6. Assume that
γ = 22.

Efron’s method has S20(y) = 0, y ≥ 15. With γ = 22, Klein and Moeschberger’s
method has S20(y) = 0.089, 15 ≤ y < 22. and S20(y) = 0, y ≥ 22. The exponential
tail correction has S20(y) = (0.089)y/15, y ≥ 15. �

Note that if there is no censoring (bi = 0 for all i), then ri+1 = ri − si, and for yj ≤ y <
yj+1

Sn(y) =

j∏
i=1

(
ri − si
ri

)
=

j∏
i=1

ri+1

ri
=
rj+1

r1
.

In this case, rj+1 is the number of observations exceeding y and r1 = n. Thus, with no
censoring, the Kaplan–Meier estimate reduces to the empirical estimate of the previous
section.

An alternative to the Kaplan–Meier estimator, called the Nelson–Aalen estimator [1],
[18], is sometimes used. To motivate the estimator, note that if S(y) is the survival function
of a continuous distribution with failure rate h(y), then − lnS(y) = H(y) =

∫ y
0
h(t)dt is

called the cumulative hazard rate function. The discrete analog is, in the present context,
given by

∑
i|yi≤y

λi, which can intuitively be estimated by replacing λi by its estimate λ̂i =

si/ri. The Nelson–Aalen estimator of H(y) is thus defined for y < ymax to be

Ĥ(y) =


0, y < y1,
j∑
i=1

λ̂i =
j∑
i=1

si
ri
, yj ≤ y < yj+1, j = 1, 2, . . . , k − 1,

k∑
i=1

λ̂i =
k∑
i=1

si
ri
, yk ≤ y < ymax.

That is, Ĥ(y) =
∑

i|yi≤y
λ̂i for y < ymax, and the Nelson–Aalen estimator of the

survival function is Ŝ(y) = exp(−Ĥ(y)). The notation under the summation sign indi-
cates that values of λ̂i should be included only if yi ≤ y. For y ≥ ymax, the situation is
similar to that involving the Kaplan–Meier estimate in the sense that a tail correction of the
type discussed earlier needs to be employed. Note that, unlike the Kaplan–Meier estimate,
Ŝ(yk) > 0, so that a tail correction is always needed.

EXAMPLE 14.8

Determine the Nelson–Aalen estimates for the data in Example 14.6. Continue to
assume γ = 22.

The estimates of the cumulative hazard function are given in Table 14.11. The
estimated survival function is
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Table 14.11 The Nelson–Åalen estimates for Example 14.8.

i yi si ri Ĥn(yi)

1 1 1 20 1/20 = 0.050

2 2 1 19 0.05 + 1/19 = 0.103

3 4 2 17 0.103 + 2/17 = 0.220

4 5 1 13 0.220 + 1/13 = 0.297

5 8 3 11 0.297 + 3/11 = 0.570

6 9 4 8 0.570 + 4/8 = 1.070

7 12 2 3 1.070 + 2/3 = 1.737

Ŝ20(y) =



= 1, y < 1,

= e−0.050 = 0.951, 1 ≤ y < 2,

= e−0.103 = 0.902, 2 ≤ y < 4,

= e−0.220 = 0.803, 4 ≤ y < 5,

= e−0.297 = 0.743, 5 ≤ y < 8,

= e−0.570 = 0.566, 8 ≤ y < 9,

= e−1.070 = 0.343, 9 ≤ y < 12,

= e−1.737 = 0.176, 12 ≤ y < 15.

With regard to tail correction, Efron’s method has S20(y) = 0, y ≥ 15. Klein and
Moeschberger’s method has S20(y) = 0.176, 15 ≤ y < 22, and S20(y) = 0, y ≥ 22.
The exponential tail correction has S20(y) = (0.176)y/15, y ≥ 15. �

To assess the quality of the two estimators, we will now consider estimation of the variance.
Recall that for y < ymax, the Kaplan–Meier estimator may be expressed as

Sn(y) =
∏
i|yi≤y

(
1− λ̂i

)
,

which is a function of the λ̂is. Thus, to estimate the variance of Sn(y), we first need
the covariance matrix of (λ̂1, λ̂2, . . . , λ̂k). We estimate this from the “likelihood,” using
standard likelihood methods. Recall that

L (λ1, λ2, . . . , λk) =

k∏
j=1

λ
sj
j (1− λj)rj−sj ,

and thus l = lnL satisfies

l (λ1, λ2, . . . , λk) =

k∑
j=1

[sj lnλj + (rj − sj) ln(1− λj)] .

Thus,
∂l

∂λi
=
si
λi
− ri − si

1− λi
, i = 1, 2, . . . , k,



312 CONSTRUCTION OF EMPIRICAL MODELS

and
∂2l

∂λ2
i

= − si
λ2
i

− ri − si
(1− λi)2 ,

which, with λi replaced by λ̂i = si/ri, becomes

∂2l

∂λ2
i

|λi=λ̂i = − si
λ̂2
i

− ri − si
(1− λ̂i)2

= − r3
i

si(ri − si)
.

For i 6= m,
∂2l

∂λi∂λm
= 0.

The observed information, evaluated at the maximum likelihood estimate, is thus a
diagonal matrix, which when inverted yields the estimates

Var(λ̂i)
.
=
si(ri − si)

r3
i

=
λ̂i(1− λ̂i)

ri
, i = 1, 2, . . . , k,

and
Cov(λ̂i, λ̂m)

.
= 0, i 6= m.

These results also follow directly from the binomial form of the likelihood.
Returning to the problem at hand, the delta method4 gives the approximate variance

of f(θ̂) as Var[f(θ̂)]
.
= [f ′(θ̂)]2Var(θ̂), for an estimator θ̂.

To proceed, note that

lnSn(y) =
∑
i|yi≤y

ln(1− λ̂i),

and since the λ̂is are assumed to be approximately uncorrelated,

Var[lnSn(y)]
.
=
∑
i|yi≤y

Var[ln(1− λ̂i)].

The choice f(x) = ln(1− x) yields

Var[ln(1− λ̂i)]
.
=

Var(λ̂i)

(1− λ̂i)2

.
=

λ̂i

ri(1− λ̂i)
=

si
ri(ri − si)

,

implying that
Var[lnSn(y)]

.
=
∑
i|yi≤y

si
ri(ri − si)

.

Because Sn(y) = exp[lnSn(y)], the delta method with f(x) = exp(x) yields

Var[Sn(y)]
.
= {exp[lnSn(y)]}2Var[lnSn(y)] = [Sn(y)]2Var[lnSn(y)],

4The delta method is presented in Section 11.6. Candidates for the Society of Actuaries Long-Term Actuarial
Mathematics exam are not expected to be able to apply this method to given problems. In this chapter, it is
important to know that many of the variance formulas are approximate due to being derived by the delta method.
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This yields the final version of the estimate,

V̂ar[Sn(y)] = [Sn(y)]2
∑
i|yi≤y

si
ri(ri − si)

. (14.2)

Equation (14.2) holds for y < ymax in all cases. However, if ymax = yk (that is, there
are no censored observations after the last uncensored observation), then it holds for y ≤
ymax = yk. Hence the formula always holds for y ≤ yk.

Formula (14.2) is known as Greenwood’s approximation to the variance of Sn(y),
and is known to often understate the true variance.

If there is no censoring, and we take yj ≤ y < yj+1, then Greenwood’s approxima-
tion yields

V̂ar[Sn(y)] = V̂ar[Sn(yj)] = [Sn(yj)]
2

j∑
i=1

si
ri(ri − si)

,

which may be expressed (using ri+1 = ri − si due to no censoring) as

V̂ar[Sn(y)] = [Sn(yj)]
2

j∑
i=1

(
1

ri − si
− 1

ri

)

= [Sn(yj)]
2

j∑
i=1

(
1

ri+1
− 1

ri

)
.

Because r1 = n, this sum telescopes to give

V̂ar[Sn(y)] = [Sn(yj)]
2

(
1

rj+1
− 1

r1

)
= [Sn(yj)]

2

[
1

nSn(yj)
− 1

n

]
=
Sn(yj)[1− Sn(yj)]

n
,

which is the same estimate as obtained in Section 14.1, but derived without use of the delta
method.

We remark that in the case with rk = sk (i.e. Sn(yk) = 0), Greenwood’s approxi-
mation cannot be used to estimate the variance of Sn(yk). In this case, rk − sk is often
replaced by rk in the denominator.

Turning now to the Nelson–Aalen estimator, we note that

Ĥ(y) =
∑
i|yi≤y

λ̂i,

and the same reasoning used for Kaplan–Meier implies that Var[Ĥ(y)]
.
=

∑
i|yi≤y

Var(λ̂i),

yielding the estimate

V̂ar[Ĥ(y)] =
∑
i|yi≤y

si(ri − si)
r3
i

, (14.3)

which is referred to as Klein’s estimate. A commonly used alternative estimate due to
Aalen is obtained by replacing ri − si with ri in the numerator.
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We are typically more interested in S(t) than H(t). Because Ŝ(y) = exp[−Ĥ(y)],
the delta method with f(x) = e−x yields Klein’s survival function estimate

Var[Ŝ(y)]
.
= [exp(−Ĥ(y))]2V̂ar[Ĥ(y)],

that is, the estimated variance is

V̂ar[Ŝ(y)] = [Ŝ(y)]2
∑
i|yi≤y

si(ri − si)
r3
i

, y < ymax.

EXAMPLE 14.9

For the data of Example 14.5, estimate the variance of the Kaplan–Meier estimators
of S(2) and S(9), and the Nelson–Aalen estimator of S(2).

For the Kaplan–Meier estimators,

V̂ar[S20(2)] = [S20(2)]
2

[
1

20(19)
+

1

19(18)

]
= (0.90)2(0.00556)

= 0.0045,

V̂ar[S20(9)] = [S20(9)]2
[

1

20(19)
+

1

19(18)
+

2

17(15)
+

1

13(12)
+

3

11(8)
+

4

8(4)

]
= (0.26656)2(0.17890)

= 0.01271,

and for the Nelson–Aalen estimator,

V̂ar[Ŝ(2)] = [Ŝ(2)]2
[

1(19)

(20)3
+

1(18)

(19)3

]
= (0.90246)2(0.00500)

= 0.00407.

�

Variance estimates for y ≥ ymax depend on the tail correction used. Efron’s method gives
an estimate of 0, which is not of interest in the present context. For the exponential tail
correction in the Kaplan–Meier case, we have for y ≥ ymax, Sn(y) = Sn(yk)

y/ymax , and
the delta method with f(x) = xy/ymax yields

V̂ar[Sn(y)] =

[
y

ymax
Sn (yk)

y
ymax

−1

]2

V̂ar[Sn(yk)]

=

(
y

ymax

)2

[Sn(y)]2
k∑
i=1

si
ri(ri − si)

=

(
y

ymax

)2 [
Sn(y)

Sn(yk)

]2

V̂ar[Sn(yk)].
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Likelihood methods typically result in approximate asymptotic normality of the esti-
mates, and this is true for Kaplan–Meier and Nelson–Aalen estimates as well. Using the
results of Example 14.9, an approximate 95% confidence interval for S(9) is given by

S20(9)± 1.96
√
{Var[S20(9)]} = 0.26656± 1.96

√
0.01271 = (0.04557, 0.48755).

For S(2), the Nelson–Aalen estimate gives a confidence interval of

0.90246± 1.96
√

0.00407 = (0.77740, 1.02753),

whereas that based on the Kaplan–Meier estimate is

0.90± 1.96
√

0.0045 = (0.76852, 1.03148).

Clearly, both confidence intervals for S(2) are unsatisfactory, both including values greater
than 1.

An alternative approach can be constructed as follows, using the Kaplan–Meier esti-
mate as an example.

Let Y = ln[− lnSn(y)]. Using the delta method, the variance of Y can be approxi-
mated as follows. The function of interest is f(x) = ln(− lnx). Its derivative is

f ′(x) =
1

− lnx

−1

x
=

1

x lnx
.

According to the delta method,

V̂ar(Y ) = {f ′[Sn(y)]}2Var[Sn(y)] =
Var[Sn(y)]

[Sn(y) lnSn(y)]2
.

Then, an approximate 95% confidence interval for θ = ln[− lnS(y)] is

ln[− lnSn(y)]± 1.96

√
V̂ar[Sn(y)]

Sn(y) lnSn(y)
.

Because S(y) = exp(−eY ), evaluating each endpoint of this formula provides a confi-
dence interval for S(y). For the upper limit, we have (where v̂ = V̂ar[Sn(y)])

exp
{
−eln[− lnSn(y)]+1.96

√
v̂/[Sn(y) lnSn(y)]

}
= exp

{
[lnSn(y)]e1.96

√
v̂/[Sn(y) lnSn(y)]

}
= Sn(y)U , U = exp

[
1.96
√
v̂

Sn(y) lnSn(y)

]
.

Similarly, the lower limit is Sn(y)1/U . This interval will always be inside the range 0–1
and is referred to as a log-transformed confidence interval.

EXAMPLE 14.10

Construct a 95% log-transformed confidence interval for S(2) in Example 14.9 based
on the Kaplan–Meier estimator. In this case, S20(2) = 0.9, andU = exp

[
1.96(0.06708)
0.90 ln 0.90

]
=
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0.24994. The lower limit is (0.90)1/U = 0.65604 and the upper limit is (0.90)U =
0.97401. �

For the Nelson–Aalen estimator, a similar log-transformed confidence interval for H(y)

has endpoints Ĥ(y)U , where U = exp[±1.96

√
V̂ar[Ĥ(y)]/Ĥ(y)]. Exponentiation of the

negative of these endpoints yields a corresponding interval for S(y).

EXAMPLE 14.11

Construct 95% linear and log-transformed confidence intervals for H(2) in Example
14.9 based on the Nelson–Aalen estimate. Then construct a 95% log-transformed
confidence interval for S(2).

From (14.3), a 95% linear confidence interval for H(2) is

0.10263± 1.96

√
1(19)

(20)3
+

1(18)

(19)3
= 0.10263± 1.96

√
0.00500

= (−0.03595, 0.24121)

which includes negative values. For a log-transformed confidence interval, we have

U = exp[±1.96
√

0.00500/0.10263]

= 0.25916 and 3.8586.

The interval is from

(0.10263)(0.25916) = 0.02660 to (0.10263)(3.85865) = 0.39601.

The corresponding interval for S(2) is from

exp(−0.39601) = 0.67300 to exp(−0.02660) = 0.97375. �

14.3.1 Exercises

14.10 (*) You are given the following times of first claim for five randomly selected auto-
mobile insurance policies: 1, 2, 3, 4, and 5. You are later told that one of the five times
given is actually the time of policy lapse, but you are not told which one. The smallest
product-limit estimate of S(4), the probability that the first claim occurs after time 4, would
result if which of the given times arose from the lapsed policy?

14.11 (*) For a mortality study with right censored data, you are given the information in
Table 14.12. Calculate the estimate of the survival function at time 12 using the Nelson–
Aalen estimate.

14.12 (*) Let n be the number of lives observed from birth. None were censored and no
two lives died at the same age. At the time of the ninth death, the Nelson–Aalen estimate of
the cumulative hazard rate is 0.511, and at the time of the tenth death it is 0.588. Estimate
the value of the survival function at the time of the third death.
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Table 14.12 The data for Exercise 14.11.

Time Number of deaths Number at risk

tj sj rj

5 2 15

7 1 12

10 1 10

12 2 6

14.13 (*) All members of a study joined at birth; however, some may exit the study by
means other than death. At the time of the third death, there was one death (i.e. s3 = 1); at
the time of the fourth death, there were two deaths; and at the time of the fifth death, there
was one death. The following product-limit estimates were obtained: Sn(y3) = 0.72,
Sn(y4) = 0.60, and Sn(y5) = 0.50. Determine the number of censored observations
between times y4 and y5. Assume that no observations were censored at the death times.

14.14 (*) A mortality study has right censored data and no left truncated data. Uncensored
observations occurred at ages 3, 5, 6, and 10. The risk sets at these ages were 50, 49, k,
and 21, respectively, while the number of deaths observed at these ages were 1, 3, 5, and
7, respectively. The Nelson–Aalen estimate of the survival function at time 10 is 0.575.
Determine k.

14.15 (*) Consider the observations 2,500, 2,500, 2,500, 3,617, 3,662, 4,517, 5,000, 5,000,
6,010, 6,932, 7,500, and 7,500. No truncation is possible. First, determine the Nelson–
Aalen estimate of the cumulative hazard rate function at 7,000, assuming that all the
observations are uncensored. Second, determine the same estimate, assuming that the
observations at 2,500, 5,000, and 7,500 were right censored.

14.16 (*) No observations in a data set are truncated. Some are right censored. You are
given s3 = 1, s4 = 3, and the Kaplan–Meier estimates Sn(y3) = 0.65, Sn(y4) = 0.50,
and Sn(y5) = 0.25. Also, between the observations y4 and y5 there are six right censored
observations and no observations were right censored at the same value as an uncensored
observation. Determine s5.

14.17 For Data Set A, determine the empirical estimate of the probability of having two or
more accidents and estimate its variance.

14.18 (*) Ten individuals were observed from birth. All were observed until death. Table
14.13 gives the death ages. Let V1 denote the estimated conditional variance of 3q̂7 if
calculated without any distribution assumption. Let V2 denote the conditional variance of
3q̂7 if calculated knowing that the survival function is S(t) = 1−t/15. Determine V1−V2.

14.19 (*) Observations can be censored, but there is no truncation. Let yj and yj+1 be
consecutive death ages. A 95% linear confidence interval for H(yj) using the Klein esti-
mator is (0.07125, 0.22875), while a similar interval for H(yj+1) is (0.15985, 0.38257).
Determine sj+1.
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Table 14.13 The data for Exercise 14.18.

Age Number of deaths

2 1

3 1

5 1

7 2

10 1

12 2

13 1

14 1

14.20 (*) A mortality study is conducted on 50 lives, all observed from age 0. At age 15
there were two deaths; at age 17 there were three censored observations; at age 25 there
were four deaths; at age 30 there were c censored observations; at age 32 there were eight
deaths; and at age 40 there were two deaths. Let S be the product-limit estimate of S(35)
and let V be the Greenwood approximation of this estimator’s variance. You are given
V/S2 = 0.011467. Determine the value of c.

14.21 (*) Fifteen cancer patients were observed from the time of diagnosis until the earlier
of death or 36 months from diagnosis. Deaths occurred as follows: at 15 months there were
two deaths; at 20 months there were three deaths; at 24 months there were two deaths; at
30 months there were d deaths; at 34 months there were two deaths; and at 36 months
there was one death. The Nelson–Aalen estimate of H(35) is 1.5641. Determine Klein’s
estimate of the variance of this estimator.

14.22 (*) Ten payments were recorded as follows: 4, 4, 5, 5, 5, 8, 10, 10, 12, and 15, with
the italicized values representing payments at a policy limit. There were no deductibles.
Determine the product-limit estimate of S(11) and Greenwood’s approximation of its
variance.

14.23 (*) All observations begin on day 0. Eight observations were 4, 8, 8, 12, 12, 12, 22,
and 36, with the italicized values representing right censored observations. Determine the
Nelson–Aalen estimate of H(12) and then determine a 90% linear confidence interval for
the true value using Klein’s variance estimate.

14.24 You are given the data in Table 14.14, based on 40 observations. Dashes indicate
missing observations that must be deduced.

Table 14.14 The data for Exercise 14.24.

i yi si bi ri

1 4 3 — 40

2 6 — 3 31

3 9 6 4 23

4 13 4 — —

5 15 2 4 6
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(a) Compute the Kaplan–Meier estimate S40(yi) for i = 1, 2, . . . , 5.
(b) Compute the Nelson–Aalen estimate Ĥ(yi) for i = 1, 2, . . . , 5.
(c) Compute S40(24) using the method of Brown, Hollander, and Korwar.

(d) Compute Greenwood’s approximation, V̂ar[S40(15)].
(e) Compute a 95% linear confidence interval for S(15) using the Kaplan–Meier

estimate.
(f) Compute a 95% log-transformed confidence interval for S(15) using the Kaplan–

Meier estimate.

14.25 You are given the data in Table 14.15, based on 50 observations.

(a) Compute the Kaplan–Meier estimate S50(yi) for i = 1, 2, . . . , 6.
(b) Compute the Nelson–Aalen estimate Ŝ(yi) for i = 1, 2, . . . , 6.
(c) Compute S50(40) using Efron’s tail correction, and also using the exponential tail

correction of Brown, Hollander, and Korwar.
(d) Compute Klein’s survival function estimate of the variance of Ŝ(20).
(e) Compute a 95% log-transformed confidence interval forH(20) based on the Nelson–

Aalen estimate.
(f) Using the exponential tail correction method of Brown, Hollander, and Korwar,

estimate the variance of Ŝ(40).

14.26 Consider the estimator

S̃(y) =
∏
i|yi≤y

φ
(
λ̂i

)
where φ is differentiable.

(a) Show that S̃(y) becomes the Kaplan–Meier estimator Sn(y) when φ(x) = 1− x,
and S̃(y) becomes the Nelson–Aalen estimator Ŝ(y) when φ(x) = e−x.

(b) Derive the variance estimate

Var
[
S̃(y)

]
≈
[
S̃(y)

]2 ∑
i|yi≤y

φ′
(
λ̂i

)
φ
(
λ̂i

)
2

si(ri − si)
r3
i

.

Table 14.15 The data for Exercise 14.25.

i yi si bi ri

1 3 3 6 50

2 5 7 4 41

3 7 5 2 30

4 11 5 3 23

5 16 6 4 15

6 20 2 3 5
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(c) Consider

S̃m(y) =
∏
i|yi≤y

φm

(
λ̂i

)
with φm(x) =

m∑
j=0

(−x)j/j! for m = 0, 1, 2, . . . .

Prove that Ŝ(y) ≤ S̃2m(y) if m = 0, 1, 2, . . . , and Ŝ(y) ≥ S̃2m+1(y) if m =
0, 1, 2, . . . , and thus that Ŝ(y) ≥ Sn(y) in particular.
Hint: Prove by induction on m the identity (−1)m [φm(x)− e−x] ≥ 0 for x ≥ 0
and m = 0, 1, 2, . . . .

14.4 Empirical Estimation of Moments

In the previous section, we focused on estimation of the survival function S(y) or, equiv-
alently, the cumulative distribution function F (y) = 1 − S(y), of a random variable Y .
In many actuarial applications, other quantities such as raw moments are of interest. Of
central importance in this context is the mean, particularly for premium calculation in a
loss modelling context. For estimation of the mean with complete data Y1, Y2, . . . , Yn,
an obvious (unbiased) estimation is µ̂ = (Y1 + Y2 + · · ·Yn)/n, but for incomplete data
such as that of the previous section involving right censoring, other methods are needed.
We continue to assume that we have the setting described in the previous section, and we
will capitalize on the results obtained for S(y) there. To do so, we recall that, for random
variables that take on only nonnegative values, the mean satisfies

µ = E(Y ) =

∫ ∞
0

S(y) dy,

and empirical estimation of µ may be done by replacing S(y) with an estimator such as
the Kaplan–Meier estimator Sn(y) or the Nelson–Aalen estimator Ŝ(y). To unify the
approach, we will assume that S(y) is estimated for y < ymax by the estimator given in
Exercise 14.26 of Section 14.3, namely

S̃(y) =
∏
i|yi≤y

φ(λ̂i),

where φ(x) = 1 − x for the Kaplan–Meier estimator and φ(x) = e−x for the Nelson–
Aalen estimator. The mean is obtained by replacing S(y) with S̃(y) in the integrand. This
yields the estimator

µ̃ =

∫ ∞
0

S̃(y) dy.

It is convenient to write

µ̃ =

∫ ymax

0

S̃(y) dy + τ̃(ymax),

where

τ(x) =

∫ ∞
x

S(y) dy, x ≥ 0

and

τ̃(x) =

∫ ∞
x

S̃(y) dy, x ≥ 0.
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Anticipating what follows, we wish to evaluate τ(ym) for m = 1, 2, . . . , k. For

m = k, we have that S(y) = S(yk) =
k∏
i=1

φ(λi) for yk ≤ y < ymax. Thus

τ(yk) = τ(ymax) + (ymax − yk)

k∏
i=1

φ(λi).

To evaluate τ(ym) for m = 1, 2, . . . , k − 1, recall that S(y) = 1 for 0 ≤ y < y1 and

for yj ≤ y < yj+1, S(y) = S(yj) =
j∏
i=1

φ(λi). Thus,

τ(ym) = τ(yk) +

∫ yk

ym

S(y) dy

= τ(yk) +

k∑
j=m+1

∫ yj

yj−1

S(y) dy

= τ(yk) +

k∑
j=m+1

∫ yj

yj−1

S(yj−1) dy

= τ(yk) +

k∑
j=m+1

(yj − yj−1)

j−1∏
i=1

φ(λi).

For evaluation of µ, note that

µ =

∫ y1

0

S(y) dy + τ(y1) = y1 + τ(y1),

and also that for m = 1, 2, . . . , k − 1,

τ(ym) = τ(ym+1) + (ym+1 − ym)S(ym),

a recursive formula, beginning with τ(yk).

For the estimates themselves, S̃(yj) =
j∏
i=1

φ(λ̂i), and the above formulas continue to

hold when τ(ym) is replaced by τ̃(ym), S(y) by S̃(y), and µ by µ̃.
The estimate of the mean µ clearly depends on τ(ymax), which in turn depends

on the tail correction, that is, on S(y) for y ≥ ymax. If S(y) = 0 for y ≥ ymax

(as, for example, under Efron’s tail correction), then τ(ymax) = 0. Under Klein and
Moeschberger’s method, with S(y) = S(yk) for yk ≤ y < γ, and S(y) = 0 for y ≥ γ
where γ > ymax ,

τ(ymax) =

∫ γ

ymax

S(y) dy +

∫ ∞
γ

S(y) dy = (γ − ymax)S(yk).

For the exponential tail correction of Brown, Hollander, and Korwar, S(y) = e−βy

for y ≥ ymax with β = − lnS(yk)/ymax. Thus

τ(ymax) =

∫ ∞
ymax

e−βy dy =
1

β
e−βymax =

ymaxS(yk)

− lnS(yk)
.

The following example illustrates the calculation of µ̃, where all empirical quantities
are obtained by substitution of estimates.
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EXAMPLE 14.12

Calculate the estimates of the mean for the Nelson–Aalen estimate of Example 14.8
under the three tail corrections. Continue to assume that γ = 22.

We have, in terms of τ̃(ymax) = τ̃(15) ,

τ̃(y7) = τ̃(12) = (15− 12)Ŝ(12) + τ̃(15) = 3(0.176) + τ̄(15) = 0.528 + τ̃(15),

τ̃(y6) = τ̃(9) = (12− 9)Ŝ(9) + τ̃(12) = 3(0.343) + τ̃(12) = 1.557 + τ̃(15),

τ̃(y5) = τ̃(8) = (9− 8)Ŝ(8) + τ̃(9) = 1(0.566) + τ̃(9) = 2.123 + τ̃(15),

τ̃(y4) = τ̃(5) = (8− 5)Ŝ(5) + τ̃(8) = 3(0.743) + τ̃(8) = 4.352 + τ̃(15),

τ̃(y3) = τ̃(4) = (5− 4)Ŝ(4) + τ̃(5) = 1(0.803) + τ̃(5) = 5.155 + τ̃(15),

τ̃(y2) = τ̃(2) = (4− 2)Ŝ(2) + τ̃(4) = 2(0.902) + τ̃(4) = 6.959 + τ̃(15),

τ̃(y1) = τ̃(1) = (2− 1)Ŝ(1) + τ̃(2) = 1(0.951) + τ̃(2) = 7.910 + τ̃(15).

Then, µ̃ = y1 + τ̃(y1) = 1 + 7.910 + τ̃(15) = 8.910 + τ̃(15). Under Efron’s
method, τ̃(15) = 0 and µ̃ = 8.910; while under Klein and Moeschberger’s method,
τ̃(15) = (22− 15)(0.176) = 1.232 and µ̃ = 8.910 + 1.232 = 10.142. Finally, for the
exponential tail correction, τ̃(15) = (15)(0.176)/(− ln 0.176) = 1.520, and therefore
µ̃ = 8.910 + 1.520 = 10.43. �

To estimate the variance of µ̃, we note that µ̃ is a function of λ̂ = (λ̂1, λ̂2, . . . , λ̂k), for
which we have an estimate of the variance matrix from the previous section. In particular,
Var(λ̂) is a k × k diagonal matrix (i.e. all off-diagonal elements are 0). Thus, by the
multivariate delta method, with the 1 × k matrix A with jth entry ∂µ/∂λj , the estimated
variance of µ̃ is

Var(µ̃)
.
=

k∑
m=1

(
∂µ

∂λm

)2

Var(λ̂m),

and it remains to identify ∂µ/∂λm for m = 1, 2, . . . , k.
To begin, first note that µ depends on τ(yk), which in turn depends on S(yk) =

k∏
i=1

φ(λi) but also on the tail correction employed. As such, we will express the formulas

in terms of ∂τ(yk)/∂λm for m = 1, 2, . . . , k for the moment. We first consider ∂µ/∂λm
for m = 1, 2, . . . , k − 1. Then,

µ = y1 + τ(y1) = y1 + τ(yk) +

k∑
j=2

(yj − yj−1)

j−1∏
i=1

φ(λi).

In the above expression, λm does not appear in the first m − 1 terms of the summation,
that is, for j ≤ m. Thus,

∂µ

∂λm
=
∂τ(yk)

∂λm
+

∂

∂λm

 k∑
j=m+1

(yj − yj−1)

j−1∏
i=1

φ(λi)


=
∂τ(yk)

∂λm
+
φ′(λm)

φ(λm)

k∑
j=m+1

(yj − yj−1)

j−1∏
i=1

φ(λi),
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and in terms of τ(ym), this may be expressed as

∂µ

∂λm
=
∂τ(yk)

∂λm
+
φ′(λm)

φ(λm)
[τ(ym)− τ(yk)] , m = 1, 2, . . . , k − 1.

It is also useful to note that
∫ yk

0
S(y)dy does not involve λk and thus ∂µ/∂λk =

∂τ(yk)/∂λk. The general variance formula thus may be written as

Var(µ̃)
.
=

k∑
m=1

{
[τ(ym)− τ(yk)]

φ′(λm)

φ(λm)
+
∂τ(yk)

∂λm

}2

Var(λ̂m).

But
∂τ(yk)

∂λm
= (ymax − yk)

φ′(λm)

φ(λm)

[
k∏
i=1

φ(λi)

]
+
∂τ(ymax)

∂λm
,

and thus,
∂τ(yk)

∂λm
=
φ′(λm)

φ(λm)
[τ(yk)− τ(ymax)] +

∂τ(ymax)

∂λm
,

in turn implying that

Var(µ̃)
.
=

k∑
m=1

{
[τ(ym)− τ(ymax)]

φ′(λm)

φ(λm)
+
∂τ(ymax)

∂λm

}2

Var(λ̂m).

The variance is estimated by replacing parameters with their estimates in the above
formula. This yields

V̂ar(µ̃) =

k∑
m=1

{
[τ̃(ym)− τ̃(ymax)]

φ′(λ̂m)

φ(λ̂m)
+
∂τ̃(ymax)

∂λ̂m

}2
sm(rm − sm)

r3
m

,

where we understand ∂τ̃(ymax)/∂λ̂m to mean ∂τ(ymax)/∂λm with τ(ymax) replaced by
τ̃(ymax) and λm by λ̂m.

If τ̃(ymax) = 0, then

V̂ar(µ̃) =
k∑

m=1

[τ̃(ym)]2

[
φ′(λ̂m)

φ(λ̂m)

]2
sm(rm − sm)

r3
m

,

a formula that further simplifies, under the Kaplan–Meier assumption φ(x) = 1 − x

(recalling that λ̂m = sm/rm), to

V̂ar(µ̃) =

k∑
m=1

[τ̃(ym)]2
sm

rm(rm − sm)
.

We note that τ̃(ymax) = 0 if no tail correction is necessary, because S(yk) = 0 (in which
case τ̃(yk) = 0 as well and the upper limit of the summation is k − 1), or under Efron’s
approximation.

For Klein and Moeschberger’s method,

τ(ymax) = (γ − ymax)S(yk) = (γ − ymax)

k∏
i=1

φ(λi),
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implying that
∂τ(ymax)

∂λm
=
φ′(λm)

φ(λm)
τ(ymax),

resulting in the same variance formula as under Efron’s method [but τ̃(ym) is increased by
τ̃(ymax) for this latter approximation].

Turning now to the exponential tail correction with τ(ymax) = −ymaxS(yk)/ lnS(yk),

recall that S(yk) =
k∏
i=1

φ(λi) and lnS(yk) =
k∑
i=1

lnφ(λi). Thus

∂τ(ymax)

∂λm
= − ymax

lnS(yk)

[
∂

∂λm
S(yk)

]
+
ymaxS(yk)

[lnS(yk)]2

[
∂

∂λm
lnS(yk)

]
= − ymax

lnS(yk)

[
φ′(λm)

φ(λm)
S(yk)

]
+

ymaxS(yk)

[− lnS(yk)]2

[
φ′(λm)

φ(λm)

]
= τ(ymax)

φ′(λm)

φ(λm)
+

[τ(ymax)]2

ymaxS(yk)

φ′(λm)

φ(λm)
.

Therefore, under the exponential tail correction, the general variance estimate becomes

V̂ar(µ̃) =

k∑
m=1

{
τ̃(ym) +

[τ̃(ymax)]2

ymaxS̃(yk)

}2
[
φ′(λ̂m)

φ(λ̂m)

]2
sm(rm − sm)

r3
m

.

In the Nelson–Aalen case with φ(x) = e−x, the term [φ′(λ̂m)/φ(λ̂m)]2 may obvi-
ously be omitted.

EXAMPLE 14.13

Estimate the variance of the means calculated in Example 14.12.

For both Efron’s and Klein and Moeschberger’s approaches, the formula becomes

V̂ar(µ̃) =

7∑
m=1

[τ̃(ym)]2
sm(rm − sm)

r3
m

= [7.910 + τ̃(15)]2
(1)(19)

(20)3
+ [6.959 + τ̃(15)]2

(1)(18)

(19)3

+ [5.155 + τ̃(15)]2
(2)(15)

(17)3
+ [4.352 + τ̃(15)]2

(1)(12)

(13)3

+ [2.123 + τ̃(15)]2
(3)(8)

(11)3
+ [1.557 + τ̃(15)]2

(4)(4)

(8)3

+ [0.528 + τ̃(15)]2
(2)(1)

(3)3
.

Under Efron’s approach, τ̃(15) = 0, yielding the variance estimate of 0.719, whereas
under Klein and Moeschberger’s method, τ̃(15) = 1.232, yielding the variance esti-
mate of 1.469. For the exponential tail correction, we have τ̃(15) = 1.520 and

[τ̃(ymax)]2

ymaxŜ(yk)
=

[τ̃(15)]2

15Ŝ(12)
=

(1.520)2

15(0.176)
= 0.875,
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and the variance estimate is thus

V̂ar(µ̃) =

7∑
m=1

[τ̃(ym) + 0.875]2
sm(rm − sm)

r3
m

.

That is,

V̂ar(µ̃) = (7.910 + 1.520 + 0.875)2 (1)(19)

(20)3
+ (6.959 + 1.520 + 0.875)2 (1)(18)

(19)3

+ (5.155 + 1.520 + 0.875)2 (2)(15)

(17)3
+ (4.352 + 1.520 + 0.875)2 (1)(12)

(13)3

+ (2.123 + 1.520 + 0.875)2 (3)(8)

(11)3
+ (1.557 + 1.520 + 0.875)2 (4)(4)

(8)3

+ (0.528 + 1.520 + 0.875)2 (2)(1)

(3)3

= 2.568. �

For higher moments, a similar approach may be used. We have, for the αth moment,

E(Y α) = α

∫ ∞
0

yα−1S(y) dy,

which may be estimated (using y0 = 0 without loss of generality) by

µ̃α = α

∫ ∞
0

yα−1S̃(y) dy

= α

 k∑
j=1

∫ yj

yj−1

yα−1S̃(y) dy

+ α

∫ ymax

yk

yα−1S̃(y) dy + α

∫ ∞
ymax

yα−1S̃(y) dy

= α

 k∑
j=1

∫ yj

yj−1

yα−1S̃(yj−1) dy

+ α

∫ ymax

yk

yα−1S̃(yk) dy + α

∫ ∞
ymax

yα−1S̃(y) dy

= α

 k∑
j=1

S̃(yj−1)

∫ yj

yj−1

yα−1 dy

+ αS̃(yk)

∫ ymax

yk

yα−1 dy + α

∫ ∞
ymax

yα−1S̃(y) dy

=

 k∑
j=1

(
yαj − yαj−1

)
S̃(yj−1)

+ (yαmax − yαk )S̃(yk) + α

∫ ∞
ymax

yα−1S̃(y) dy

= yα1 +

 k∑
j=2

(yαj − yαj−1)

j−1∏
i=1

φ(λ̂i)

+

[
(yαmax − yαk )

k∏
i=1

φ(λ̂i)

]
+ α

∫ ∞
ymax

yα−1S̃(y) dy.
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Again, the final integral on the right-hand side depends on the tail correction, and is 0
if S̃(yk) = 0 or under Efron’s tail correction. It is useful to note that under the exponential
tail correction, S̃(y) = e−β̃y for y ≥ ymax with β̃ = − ln S̃(yk)/ymax, and if α = 1, 2, . . .
,

α

∫ ∞
ymax

yα−1e−β̃ydy =
α!

β̃α

∫ ∞
ymax

β̃αyα−1e−β̃y

(α− 1)!
dy

=
α!

β̃α

α−1∑
j=0

(β̃ymax)je−β̃ymax

j!
,

using the tail function representation of the gamma distribution. That is, under the expo-
nential tail correction,

α

∫ ∞
ymax

yα−1S̃(y) dy = α!(ymax)αS̃(yk)

α−1∑
j=0

1

j!

[
− ln S̃(yk)

]j−α
, α = 1, 2, 3, . . . .

In particular, for the second moment (α = 2),

2

∫ ∞
ymax

yS̃(y)dy = 2(ymax)2S̃(yk)
{

[− ln S̃(yk)]−1 + [− ln S̃(yk)]−2
}
.

Variance estimation for µ̃α may be done in a similar manner as for the mean, if
desired.

14.4.1 Exercises

14.27 For the data of Exercise 14.24 and using the Kaplan–Meier estimate:

(a) Compute the mean survival time estimate assuming Efron’s tail correction.

(b) Compute the mean survival time estimate using the exponential tail correction of
Brown, Hollander, and Korwar.

(c) Estimate the variance of the estimate in (a).

14.28 For the data of Exercise 14.25, using the Nelson–Aalen estimate and the exponential
tail correction of Brown, Hollander, and Korwar:

(a) Estimate the mean µ̃.

(b) Estimate the variance of µ̃ in (b).

14.29 For the data in Example 14.5 and subsequent examples, using the Nelson–Aalen
estimate with the exponential tail correction of Brown, Hollander, and Korwar, estimate
the variance of Y .



EMPIRICAL ESTIMATION WITH LEFT TRUNCATED DATA 327

14.5 Empirical Estimation with Left Truncated Data

The results of Section 14.3 apply in situations in which the data are (right) censored. In
this section, we discuss the situation in which the data may also be (left) truncated. We
have the following definitions.

Definition 14.10 An observation is truncated from below (also called left truncated) at
d if when it is at or below d it is not recorded, but when it is above d it is recorded at its
observed value.

An observation is truncated from above (also called right truncated) at u if when it
is at or above u it is not recorded, but when it is below u it is recorded at its observed
value.

In insurance survival data and claim data, the most common occurrences are left trun-
cation and right censoring. Left truncation occurs when an ordinary deductible of d is
applied. When a policyholder has a loss below d, he or she realizes no benefits will be
paid and so does not inform the insurer. When the loss is above d, the amount of the
loss is assumed to be reported.5 A policy limit leads to an example of right censoring.
When the amount of the loss equals or exceeds u, benefits beyond that value are not paid,
and so the exact value is not recorded. However, it is known that a loss of at least u has
occurred.

For decrement studies, such as of human mortality, it is impractical to follow people
from birth to death. It is more common to follow a group of people of varying ages for a
few years during the study period. When a person joins a study, he or she is alive at that
time. This person’s age at death must be at least as great as the age at entry to the study
and thus has been left truncated. If the person is alive when the study ends, right censoring
has occurred. The person’s age at death is not known, but it is known that it is at least
as large as the age when the study ended. Right censoring also affects those who exit the
study prior to its end due to surrender. Note that this discussion could have been about
other decrements, such as disability, policy surrender, or retirement.

Because left truncation and right censoring are the most common occurrences in
actuarial work, they are the only cases that are covered in this section. To save words,
truncated always means truncated from below and censored always means censored from
above.

When trying to construct an empirical distribution from truncated or censored data,
the first task is to create notation to represent the data. For individual (as opposed to
grouped) data, the following facts are needed. The first is the truncation point for that
observation. Let that value be dj for the jth observation. If there was no truncation,
dj = 0.6 Next, record the observation itself. The notation used depends on whether or
not that observation was censored. If it was not censored, let its value be xj . If it was
censored, let its value be uj . When this subject is presented more formally, a distinction
is made between the case where the censoring point is known in advance and where it is
not. For example, a liability insurance policy with a policy limit usually has a censoring

5In some cases, an insured may elect to not report a loss that is slightly above the deductible if it is likely that the
next premium will be increased.
6Throughout, we assume that negative values are not possible.
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point that is known prior to the receipt of any claims. By comparison, in a mortality study
of insured lives, those that surrender their policy do so at an age that was not known when
the policy was sold. In this chapter, no distinction is made between the two cases.

To construct the estimate, the raw data must be summarized in a useful manner. The
most interesting values are the uncensored observations. As in Section 14.3, let y1 < y2 <
· · · < yk be the k unique values of the xjs that appear in the sample, where k must be less
than or equal to the number of uncensored observations. We also continue to let sj be the
number of times the uncensored observation yj appears in the sample. Again, an important
quantity is rj , the number “at risk” at yj . In a decrement study, rj represents the number
under observation and subject to the decrement at that time. To be under observation at yj ,
an individual must (1) either be censored or have an observation that is on or after yj and
(2) not have a truncation value that is on or after yj . That is,

rj = (number of xis ≥ yj) + (number of uis ≥ yj)− (number of dis ≥ yj).

Alternatively, because the total number of dis is equal to the total number of xis and uis,
we also have

rj = (number of dis < yj)− (number of xis < yj)− (number of uis < yj). (14.4)

This latter version is a bit easier to conceptualize because it includes all who have entered
the study prior to the given age less those who have already left. The key point is that
the number at risk is the number of people observed alive at age yj . If the data are loss
amounts, the risk set is the number of policies with observed loss amounts (either the actual
amount or the maximum amount due to a policy limit) greater than or equal to yj less those
with deductibles greater than or equal to yj . These relationships lead to a recursive version
of the formula,

rj = rj−1 + (number of dis between yj−1 and yj)
− (number of xis equal to yj−1)
− (number of uis between yj−1 and yj), (14.5)

where between is interpreted to mean greater than or equal to yj−1 and less than yj , and r0

is set equal to zero.
A consequence of the above definitions is that if a censoring or truncation time equals

that of a death, the death is assumed to have happened first. That is, the censored observa-
tion is considered to be at risk while the truncated observation is not.

The definition of rj presented here is consistent with that in Section 14.3. That is,
if dj = 0 for all observations, the formulas presented here reduce match those presented
earlier. The following example illustrates calculating the number at risk when there is
truncation.

EXAMPLE 14.14

Using Data Set D, introduced in Chapter 10 and reproduced here as Table 14.16, calcu-
late the rj values using both (14.4) and (14.5). To provide some context and explain
the entries in the table, think of this as a study of mortality by duration for a five-year
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Table 14.16 The values for Example 14.14.

i di xi ui i di xi ui

1 0 — 0.1 16 0 4.8 —

2 0 — 0.5 17 0 — 4.8

3 0 — 0.8 18 0 — 4.8

4 0 0.8 — 19–30 0 — 5.0

5 0 — 1.8 31 0.3 — 5.0

6 0 — 1.8 32 0.7 — 5.0

7 0 — 2.1 33 1.0 4.1 —

8 0 — 2.5 34 1.8 3.1 —

9 0 — 2.8 35 2.1 — 3.9

10 0 2.9 — 36 2.9 — 5.0

11 0 2.9 — 37 2.9 — 4.8

12 0 — 3.9 38 3.2 4.0 —

13 0 4.0 — 39 3.4 — 5.0

14 0 — 4.0 40 3.9 — 5.0

15 0 — 4.1

term insurance policy. The study period is a fixed time period. Thus, policies 31–40
were already insured when first observed. There are two ways in which censoring
occurs. For some (1, 2, 3, 5, etc.), the study either ended while they were still alive or
they terminated their policies prior to the end of the five-year term. For others (19–32,
36, etc.), the five-year term ended with them still alive. Note that the eight observed
deaths are at six distinct times and that y6 = 4.8. Because the highest censoring time
is 5.0, ymax = 5.0.

The calculations appear in Table 14.17. �

The approach to developing an empirical estimator of the survival function is to use the
formulas developed in Section 14.3, but with this more general definition of rj . A theoret-
ical treatment that incorporates left truncation is considerably more complex (for details,
see Lawless [16]).

Table 14.17 The risk set calculations for Example 14.14.

j yj sj rj

1 0.8 1 32− 0− 2 = 30 or 0 + 32− 0− 2 = 30

2 2.9 2 35− 1− 8 = 26 or 30 + 3− 1− 6 = 26

3 3.1 1 37− 3− 8 = 26 or 26 + 2− 2− 0 = 26

4 4.0 2 40− 4− 10 = 26 or 26 + 3− 1− 2 = 26

5 4.1 1 40− 6− 11 = 23 or 26 + 0− 2− 1 = 23

6 4.8 1 40− 7− 12 = 21 or 23 + 0− 1− 1 = 21
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The formula for the Kaplan–Meier estimate is the same as presented earlier, namely

Sn(y) =


1, y < y1,
j∏
i=1

(
1− λ̂i

)
=

j∏
i=1

(
1− si

ri

)
, yj ≤ y < yj+1, j = 1, 2, . . . , k − 1,

k∏
i=1

(
1− λ̂i

)
=

k∏
i=1

(
1− si

ri

)
, yk ≤ y < ymax.

The same tail corrections developed in Section 14.3 can be used for y ≥ ymax in cases
where Sn(yk) > 0.

EXAMPLE 14.15

Determine the Kaplan–Meier estimate for the data in Example 14.14.

Based on the previous example, we have

S40(y) =



1, 0 ≤ y < 0.8,

30−1
30 = 0.9667, 0.8 ≤ y < 2.9,

0.9667 26−2
26 = 0.8923, 2.9 ≤ y < 3.1,

0.8923 26−1
26 = 0.8580, 3.1 ≤ y < 4.0,

0.8580 26−2
26 = 0.7920, 4.0 ≤ y < 4.1,

0.7920 23−1
23 = 0.7576, 4.1 ≤ y < 4.8,

0.7576 21−1
21 = 0.7215, 4.8 ≤ y < 5.0.

�

In this example, a tail correction is not needed because an estimate of survival beyond the
five-year term is of no value when analyzing these policyholders.

The same analogy holds for the Nelson–Aalen estimator, where the formula for the
cumulative hazard function remains

Ĥ(y) =


0, y < y1,
j∑
i=1

si
ri
, yj ≤ y < yj+1, j = 1, 2, . . . , k − 1,

k∑
i=1

si
ri
, yk ≤ y < ymax.

As before, Ŝ(y) = exp[−Ĥ(y)] for y < ymax and for y ≥ ymax the same tail
corrections can be used.

EXAMPLE 14.16

Determine the Nelson–Aalen estimate of the survival function for the data in Example
14.14.
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The estimated functions are

Ĥ(y) =



0, 0 ≤ y < 0.8,

1
30 = 0.0333, 0.8 ≤ y < 2.9,

0.0333 + 2
26 = 0.1103, 2.9 ≤ y < 3.1,

0.1103 + 1
26 = 0.1487, 3.1 ≤ y < 4.0,

0.1487 + 2
26 = 0.2256, 4.0 ≤ y < 4.1,

0.2256 + 1
23 = 0.2691, 4.1 ≤ y < 4.8,

0.2691 + 1
21 = 0.3167, 4.8 ≤ y < 5.0.

Ŝ(y) =



1, 0 ≤ y < 0.8,

e−0.0333 = 0.9672, 0.8 ≤ y < 2.9,

e−0.1103 = 0.8956, 2.9 ≤ y < 3.1,

e−0.1487 = 0.8618, 3.1 ≤ y < 4.0,

e−0.2256 = 0.7980, 4.0 ≤ y < 4.1,

e−0.2691 = 0.7641, 4.1 ≤ y < 4.8,

e−0.3167 = 0.7285, 4.8 ≤ y < 5.0.

�

In this section, the results were not formally developed, as was done for the case with only
right censored data. However, all the results, including formulas for moment estimates and
estimates of the variance of the estimators, hold when left truncation is added. However, it
is important to note that when the data are truncated, the resulting distribution function is
the distribution function of observations given that they are above the smallest truncation
point (i.e. the smallest d value). Empirically, there is no information about observations
below that value, and thus there can be no information for that range. Finally, if it turns
out that there was no censoring or truncation, use of the formulas in this section will lead
to the same results as when using the empirical formulas in Section 14.1.

14.5.1 Exercises

14.30 Repeat Example 14.14, treating “surrender” as “death.” The easiest way to do this
is to reverse the x and u labels. In this case, death produces censoring because those who
die are lost to observation and thus their surrender time is never observed. Treat those who
lasted the entire five years as surrenders at that time.

14.31 Determine the Kaplan–Meier estimate for the time to surrender for Data Set D. Treat
those who lasted the entire five years as surrenders at that time.
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14.32 Determine the Nelson–Aalen estimate of H(t) and S(t) for Data Set D, where the
variable is time to surrender.

14.33 Determine the Kaplan–Meier and Nelson–Aalen estimates of the distribution func-
tion of the amount of a workers compensation loss. First use the raw data from Data Set B.
Then repeat the exercise, modifying the data by left truncation at 100 and right censoring
at 1,000.

14.34 (*) Three hundred mice were observed at birth. An additional 20 mice were first
observed at age 2 (days) and 30 more were first observed at age 4. There were 6 deaths at
age 1, 10 at age 3, 10 at age 4, a at age 5, b at age 9, and 6 at age 12. In addition, 45 mice
were lost to observation at age 7, 35 at age 10, and 15 at age 13. The following product-
limit estimates were obtained: S350(7) = 0.892 and S350(13) = 0.856. Determine the
values of a and b.

14.35 Construct 95% confidence intervals forH(3) by both the linear and log-transformed
formulas using all 40 observations in Data Set D, with surrender being the variable of
interest.

14.36 (*) For the interval from zero to one year, the exposure (r) is 15 and the number of
deaths (s) is 3. For the interval from one to two years, the exposure is 80 and the number
of deaths is 24. For two to three years, the values are 25 and 5; for three to four years,
they are 60 and 6; and for four to five years, they are 10 and 3. Determine Greenwood’s
approximation to the variance of Ŝ(4).

14.37 (*) You are given the values in Table 14.18. Determine the standard deviation of the
Nelson–Aalen estimator of the cumulative hazard function at time 20.

14.6 Kernel Density Models

One problem with empirical distributions is that they are always discrete. If it is known
that the true distribution is continuous, the empirical distribution may be viewed as a poor
approximation. In this section, a method of obtaining a smooth, empirical-like distribution,
called a kernel density distribution, is introduced. We have the following definition.

Definition 14.11 A kernel smoothed distribution is obtained by replacing each data point
with a continuous random variable and then assigning probability 1/n to each such random
variable. The random variables used must be identical except for a location or scale
change that is related to its associated data point.

Table 14.18 The data for Exercise 14.37.

yj rj sj

1 100 15

8 65 20

17 40 13

25 31 31
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Note that the empirical distribution is a special type of kernel smoothed distribution
in which the random variable assigns probability 1 to the data point. With regard to kernel
smoothing, there are several distributions that could be used, three of which are introduced
here.

While not necessary, it is customary that the continuous variable have a mean equal
to the value of the point it replaces, ensuring that, overall, the kernel estimate has the
same mean as the empirical estimate. One way to think about such a model is that it
produces the final observed value in two steps. The first step is to draw a value at random
from the empirical distribution. The second step is to draw a value at random from a
continuous distribution whose mean is equal to the value drawn at the first step. The
selected continuous distribution is called the kernel.

For notation, let p(yj) be the probability assigned to the value yj (j = 1, . . . , k) by the
empirical distribution. Let Ky(x) be a distribution function for a continuous distribution
such that its mean is y. Let ky(x) be the corresponding density function.

Definition 14.12 A kernel density estimator of a distribution function is

F̂ (x) =

k∑
j=1

p(yj)Kyj (x),

and the estimator of the density function is

f̂(x) =

k∑
j=1

p(yj)kyj (x).

The function ky(x) is called the kernel. Three kernels are now introduced: uniform,
triangular, and gamma.

Definition 14.13 The uniform kernel is given by

ky(x) =


0, x < y − b,

1

2b
, y − b ≤ x ≤ y + b,

0, x > y + b,

Ky(x) =


0, x < y − b,

x− y + b

2b
, y − b ≤ x ≤ y + b,

1, x > y + b.
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The triangular kernel is given by

ky(x) =



0, x < y − b,

x− y + b

b2
, y − b ≤ x ≤ y,

y + b− x
b2

, y ≤ x ≤ y + b,

0, x > y + b,

Ky(x) =



0, x < y − b,

(x− y + b)2

2b2
, y − b ≤ x ≤ y,

1− (y + b− x)2

2b2
, y ≤ x ≤ y + b,

1, x > y + b.

The gamma kernel is given by letting the kernel have a gamma distribution with shape
parameter α and scale parameter y/α. That is,

ky(x) =
xα−1e−xα/y

(y/α)αΓ(α)
and Ky(x) = Γ(α;αx/y).

Note that the gamma distribution has a mean of α(y/α) = y and a variance of α(y/α)2 =
y2/α.

In each case, there is a parameter that relates to the spread of the kernel. In the first
two cases, it is the value of b > 0, which is called the bandwidth. In the gamma case, the
value of α controls the spread, with a larger value indicating a smaller spread. There are
other kernels that cover the range from zero to infinity.

EXAMPLE 14.17

Determine the kernel density estimate for Example 14.2 using each of the three kernels.

The empirical distribution places probability 1
8 at 1.0, 1

8 at 1.3, 2
8 at 1.5, 3

8 at
2.1, and 1

8 at 2.8. For a uniform kernel with a bandwidth of 0.1 we do not get much
separation. The data point at 1.0 is replaced by a horizontal density function running
from 0.9 to 1.1 with a height of 1

8
1

2(0.1) = 0.625. In comparison, with a bandwidth
of 1.0, that same data point is replaced by a horizontal density function running from
0.0 to 2.0 with a height of 1

8
1

2(1) = 0.0625. Figures 14.3 and 14.4 provide plots of the
density functions.

It should be clear that the larger bandwidth provides more smoothing. In the limit,
as the bandwidth approaches zero, the kernel density estimate matches the empirical
estimate. Note that, if the bandwidth is too large, probability will be assigned to
negative values, which may be an undesirable result. Methods exist for dealing with
that issue, but they are not presented here.
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Figure 14.3 The uniform kernel density with bandwidth 0.1.
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Figure 14.4 The uniform kernel density with bandwidth 1.0.

For the triangular kernel, each point is replaced by a triangle. Graphs for the
same two bandwidths as used previously appear in Figures 14.5 and 14.6.

Once again, the larger bandwidth provides more smoothing. The gamma kernel
simply provides a mixture of gamma distributions, where each data point provides the
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Figure 14.5 The triangular kernel density with bandwidth 0.1.
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Figure 14.6 The triangular kernel density with bandwidth 1.0.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.5 1 1.5 2 2.5 3 3.5 4

x

f(
x
)

Figure 14.7 The gamma kernel density with α = 500.

mean and the empirical probabilities provide the weights. The density function is

fα(x) =

5∑
j=1

p(yj)
xα−1e−xα/yj

(yj/α)αΓ(α)

and is graphed in Figures 14.7 and 14.8 for two α values.7 For this kernel, decreasing
the value of α increases the amount of smoothing. Further discussion of the gamma
kernel can be found in Carriere [4], where the author recommends α =

√
n/(µ̂

′

4/µ̂
′

2−
1)1/2. �

14.6.1 Exercises

14.38 Provide the formula for the Pareto kernel.

14.39 Construct a kernel density estimate for the time to surrender for Data Set D. Be
aware of the fact that this is a mixed distribution (probability is continuous from 0 to 5 but
is discrete at 5).

7When computing values of the density function, overflow and underflow problems can be reduced by computing
the logarithm of the elements of the ratio, that is, (α − 1) lnx − xα/yj − α ln(yj/α) − ln Γ(α), and then
exponentiating the result.
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Figure 14.8 The gamma kernel density with α = 50.

Table 14.19 The data for Exercise 14.40.

tj sj rj

10 1 20

34 1 19

47 1 18

75 1 17

156 1 16

171 1 15

14.40 (*) You are given the data in Table 14.19 on time to death. Using the uniform kernel
with a bandwidth of 60, determine f̂(100).

14.41 (*) You are given the following ages at time of death for 10 individuals: 25, 30,
35, 35, 37, 39, 45, 47, 49, and 55. Using a uniform kernel with a bandwidth of b = 10,
determine the kernel density estimate of the probability of survival to age 40.

14.42 (*) Given the five observations 82, 126, 161, 294, and 384, determine each of the
following estimates of F (150):

(a) The empirical estimate.

(b) The kernel density estimate based on a uniform kernel with bandwidth b = 50.

(c) The kernel density estimate based on a triangular kernel with bandwidth b = 50.

14.7 Approximations for Large Data Sets

14.7.1 Introduction

The discussion in this section is motivated by the circumstances that accompany the deter-
mination of a model for the time to death (or other decrement) for use in pricing, reserving,
or funding insurance programs. The particular circumstances are as follows:
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Values of the survival function are required only at discrete values, normally integral
ages measured in years.

A large volume of data has been collected over a fixed time period, with most obser-
vations truncated, censored, or both.

No parametric distribution is available that provides an adequate model given the
volume of available data.

These circumstances typically apply when an insurance company (or a group of insur-
ance companies) conducts a mortality study based on the historical experience of a very
large portfolio of life insurance policies. (For the remainder of this section, we shall
refer only to mortality. The results apply equally to the study of other decrements such
as disablement or surrender.)

The typical mortality table is essentially a distribution function or a survival function
with values presented only at integral ages. While there are parametric models that do well
over parts of the age range (such as the Makeham model at ages over about 30), there are
too many changes in the pattern from age 0 to ages well over 100 to allow for a simple
functional description of the survival function.

The typical mortality study is conducted over a short period of time, such as three to
five years. For example, all persons who are covered by an insurance company’s policies
at some time from January 1, 2014 through December 31, 2016 might be included. Some
of these persons may have purchased their policies prior to 2014 and were still covered
when the study period started. During the study period some persons will die, some will
cancel (surrender) their policy, some will have their policy expire due to policy provisions
(such as with term insurance policies that expire during the study period), and some will
still be insured when the study ends. It is assumed that if a policy is cancelled or expires,
the eventual age at death will not be known to the insurance company. Some persons will
purchase their life insurance policy during the study period and be covered for some of the
remaining part of the study period. These policies will be subject to the same decrements
(death, surrender, expiration) as other policies. With regard to the age at death, almost
every policy in the study will be left truncated.8 If the policy was issued prior to 2014, the
truncation point will be the age on January 1, 2014. For those who buy insurance during the
study period, the truncation point is the age at which the contract begins. For any person
who exits the study due to a cause other than death, their observation is right censored at
the age of exit, because all that is known about them is that death will be at some unknown
later age.

When no simple parametric distribution is appropriate and when large amounts of
data are available, it is reasonable to use a nonparametric model because the large amount
of data will ensure that key features of the survival function will be captured. Because
there are both left truncation (due to the age at entry into the study) and right censoring
(due to termination of the study at a fixed time), when there are large amounts of data,
constructing the Kaplan–Meier estimate may require a very large amount of sorting and
counting. Over the years, a variety of methods have been introduced and entire texts have
been written about the problem of constructing mortality tables from this kind of data (e.g.
[2, 17]). While the context for the examples presented here is the construction of mortality
tables, the methods can apply any time the circumstances described previously apply.

8The only exception would be a policy issued during the study period to someone just born.
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We begin by examining the two ways in which data are usually collected. Estimators
will be presented for both situations. The formulas will be presented in this section and
their derivation and properties will be provided in Section 14.8. In all cases, a set of values
(ages), c0 < c1 < · · · < ck has been established in advance and the goal is to estimate the
survival function at these values and no others (with some sort of interpolation to be used
to provide intermediate values as needed). All of the methods are designed to estimate the
conditional one-period probability of death, qj = [S(cj) − S(cj+1)]/S(cj), where j may
refer to the interval and not to a particular age. From those values, S(cj)/S(c0) can be
evaluated as follows:

S(cj)

S(c0)
=

j−1∏
i=0

(1− qi).

14.7.2 Using Individual Data Points

In this setting, data are recorded for each person observed. This approach is sometimes
referred to as a seriatim method, because the data points are analyzed as a series of indi-
vidual observations. The estimator takes the form q̂j = dj/ej , where dj is the number of
observed deaths in the interval and ej is a measure of exposure, representing the number of
individuals who had a chance to be an observed death in that interval. Should a death occur
at one of the boundary values between successive intervals, the death is counted in the
preceding interval. When there are no entrants after age cj into the interval and no exitants
except for death during the interval (referred to as complete data), ej represents the number
of persons alive at age cj and the number of deaths has a binomial distribution. With incom-
plete data, it is necessary to determine a suitable convenient approximation, preferably one
that requires only a single pass through the data set. To illustrate this challenge, consider
the following example.

EXAMPLE 14.18

A mortality study is based on observations during the period January 1, 2014 through
December 31, 2016. Five policies were observed, with the information in the following
list recorded. For simplicity, a date of 3-2000 is interpreted as March 1, 2000 and all
events are treated as occurring on the first day of the month of occurrence. Further-
more, all months are treated as being one-twelfth of a year in length. Summarize the
information in a manner that is sufficient for estimating mortality probabilities.

1. Born 4-1981, purchased insurance policy on 8-2013, was an active policyholder
on 1-2017.

2. Born 6-1981, purchased insurance policy on 7-2013, died 9-2015.
3. Born 8-1981, purchased insurance policy on 2-2015, surrendered policy on 2-

2016.
4. Born 5-1981, purchased insurance policy on 6-2014, died 3-2015.
5. Born 7-1981, purchased insurance policy on 3-2014, surrendered policy on 5-

2016.

The key information is the age of the individual when first observed, the age when
last observed, and the reason why observation ended. For the five policies, using “x”
for death and “s” for any other reason, the values are (where an age of 33-6 means 33
years and 6 months) (32-9, 35-9, s), (32-7, 34-3, x), (33-6, 34-6, s), (33-1, 33-10, x),
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and (32-8, 34-10, s). Note that policies 1 and 2 were purchased prior to the start of
the study, so they are first observed when the study begins. No distinction needs to be
made between those whose observation ends by surrender as opposed to the ending of
the study. �

The next step is to tally information for each age interval, building up totals for dj and
ej . Counting deaths is straightforward. For exposures, there are two approaches that are
commonly used.

Exact exposure method
Following this method, we set the exposure equal to the exact total time under obser-

vation within the age interval. When a death occurs, that person’s exposure ends at the
exact age of death. It will be shown in Section 14.8 that dj/ej is the maximum likelihood
estimator of the hazard rate, under the assumption that the hazard rate is constant over
the interval (cj , cj+1]. Further properties of this estimator will also be discussed in that
section. The estimated hazard rate can then be converted into a conditional probability of
death using the formula qj = 1− exp(−dj/ej).

Actuarial exposure method
Under this method, the exposure period for deaths extends to the end of the age

interval, rather than the exact age at death. This has the advantage of reproducing the
empirical estimator for complete data, but has been shown to be an inconsistent estimator
in other cases. In this case, the estimate of the conditional probability of death is obtained
as qj = dj/ej .

When the conditional probability of death is small, with a large number of observa-
tions, the choice of method is unlikely to materially affect the results.

EXAMPLE 14.19

Estimate all possible mortality rates at integral ages for Example 14.18 using both
methods.

First observe that data are available for ages 32, 33, 34, and 35. The deaths are in
the intervals 33–34 and 34–35. With a seriatim approach, each policy is analyzed and
its contribution to the exposure for each interval added to the running total. For each
age interval, the contributions for each interval are totaled, using the exact exposure
method of recording time under observation. The numbers represent months.

32–33: e32 = 3 + 5 + 0 + 0 + 4 = 12.
33–34: e33 = 12 + 12 + 6 + 9 + 12 = 51.
34–35: e34 = 12 + 3 + 6 + 0 + 10 = 31.
35–36: e35 = 9 + 0 + 0 + 0 + 0 = 9.

As a check, the total contributions for the five policies are 36, 20, 12, 9, and 26,
respectively, which matches the times on observation. The only two nonzero mortality
probabilities are estimated as q̂33 = 1 − exp[−1/(51/12)] = 0.20966 and q̂34 =
1− exp[−1/(31/12)] = 0.32097.
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Under the actuarial exposure method, the exposure for the interval 33–34 for the
fourth person increases from 9 to 11 months for a total of 53 (note that it is not a
full year of exposure as observation did not begin until age 33-1). For the interval
34–35, the exposure for the second person increases from 3 to 12 months for a total
of 40. The mortality probability estimates are q̂33 = 1/(53/12) = 0.2264 and q̂34 =
1/(40/12) = 0.3. �

EXAMPLE 14.20

Use the actuarial exposure method to estimate all mortality probabilities for Data
Set D.

Noting that the deaths at time 4.0 are assigned to the interval 3–4, the estimated
values are q̂0 = 1/29.4 = 0.0340, q̂1 = 0/28.8 = 0, q̂2 = 2/27.5 = 0.0.0727, q̂3 =
3/27.3 = 0.1099, and q̂4 = 2/29.4 = 0.0930. The corresponding survival probabil-
ities are (with the Kaplan–Meier estimates in parentheses) Ŝ(1) = 0.9660 (0.9667),
Ŝ(2) = 0.9660 (0.9667), Ŝ(3) = 0.8957 (0.8923), Ŝ(4) = 0.7973 (0.7920), and
Ŝ(5) = 0.7231 (0.7215). �

14.7.2.1 Insuring Ages While the examples have been in a life insurance context, the
methodology applies to any situation with left truncation and right censoring. However,
there is a situation that is specific to life insurance studies. Consider a one-year term
insurance policy. Suppose that an applicant was born on February 15, 1981 and applies
for this insurance on October 15, 2016. Premiums are charged by whole-number ages.
Some companies will use the age at the last birthday (35 in this case) and some will use the
age at the nearest birthday (36 in this case). One company will base the premium on q35

and one on q36 when both should be using q35.67, the applicant’s true age. Suppose that a
company uses age last birthday. When estimating q35, it is not interested in the probability
that a person exactly age 35 dies in the next year (the usual interpretation) but, rather, the
probability that a random person who is assigned age 35 at issue (who can be anywhere
between 35 and 36 years old) dies in the next year. One solution is to obtain a table based
on exact ages, assume that the average applicant is 35.5, and use an interpolated value
when determining premiums. A second solution is to perform the mortality study using
the ages assigned by the company rather than the policyholder’s true age. In the example,
the applicant is considered to be exactly age 35 on October 15, 2016 and is thus assigned
a new birthday of October 15, 1981. When this is done, the study is said to use insuring
ages and the resulting values can be used directly for insurance calculations.

EXAMPLE 14.21

Suppose that the company in Example 14.18 assigned insuring ages by age last birthday.
Use the actuarial exposure method to estimate all possible mortality values.

1. Born 4-1981, purchased insurance policy on 8-2013, was an active policyholder
on 1-2017. New birthday is 8-1981, enters at 32-5, exits at 35-5.

2. Born 6-1981, purchased insurance policy on 7-2013, died 9-2015. New birthday
is 7-1981, enters at 32-6, dies at 34-2.

3. Born 8-1981, purchased insurance policy on 2-2015, surrendered policy on 2-
2016. New birthday is 2-1982, enters at 33-0, exits at 34-0.
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4. Born 5-1981, purchased insurance policy on 6-2014, died 3-2015. New birthday
is 6-1981, enters at 33-0, dies at 33-9.

5. Born 7-1981, purchased insurance policy on 3-2014, surrendered policy on 5-
2016. New birthday is 3-1982, enters at 32-0, exits at 34-2.

The exposures are now:
32–33: e32 = 7 + 6 + 0 + 0 + 12 = 25.
33–34: e33 = 12 + 12 + 12 + 12 + 12 = 60.
34–35: e34 = 12 + 12 + 0 + 0 + 2 = 26.
35–36: e35 = 5 + 0 + 0 + 0 + 0 = 5.

As expected, the exposures are assigned to younger age intervals, reflecting the
fact that each applicant is assigned an age that is less than their true age. The estimates
are q̂33 = 1/(60/12) = 0.2 and q̂34 = 1/(26/12) = 0.4615. �

Note that with insuring ages, those who enter observation after the study begins are first
observed on their newly assigned birthday. Thus there are no approximation issues with
regard to those numbers.

14.7.2.2 Anniversary-Based Mortality Studies The mortality studies described so far
in this section are often called calendar-based or date-to-date studies because the period of
study runs from one calendar date to another calendar date. It is also common for mortality
studies of insured persons to use a different setup.

Instead of having the observations run from one calendar date to another calendar date,
observation for a particular policyholder begins on the first policy anniversary following the
fixed start date of the study and ends on the last anniversary prior to the study’s fixed end
date. Such studies are often called anniversary-to-anniversary studies. We can illustrate
this through a previous example.

Consider Example 14.18, with the study now running from anniversaries in 2014 to
anniversaries in 2016. The first policy comes under observation on 8-2014 at insuring age
33-0 and exits the study on 8-2016 at insuring age 35-0. Policyholder 2 begins observation
on 7-2014 at insuring age 33-0. Policyholder 5 surrendered after the 2016 anniversary, so
observation ends on 3-2016 at age 34-0. All other ages remain the same. In this setting,
all subjects begin observations at an integral age and all who are active policyholders at
the end of the study do so at an integral age. Only the ages of death and surrender may
be other than integers (and note that with the actuarial exposure method, in calculating the
exposure, deaths are placed at the next integral age). There is a price to be paid for this
convenience. In a three-year study such as the one in the example, no single policyholder
can be observed for more than two years. In the date-to-date version, some policies will
contribute three years of exposure.

All of the examples have used one-year time periods. If the length of an interval
(cj+1 − cj) is not equal to 1, an adjustment is necessary. Exposures should be the fraction
of the period under observation and not the length of time.

14.7.3 Interval-Based Methods

Instead of recording the exact age at which an event happens, all that is recorded is the age
interval in which it took place and the nature of the event. As with the individual method,
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Table 14.20 The exact age values for Example 14.22.

Number Number Number Number Number at
Age at age entering dying exiting next age

32 0 3 0 0 3

33 3 2 1 0 4

34 4 0 1 2 1

35 1 0 0 1 0

for a portfolio of insurance policies, only running totals need to be recorded, and the end
result is just four to six9 numbers for each age interval:

1. The number of persons at the beginning of the interval carried over from the previous
interval.

2. The number of additional persons entering at the beginning of the interval.

3. The number of persons entering during the interval.

4. The number of persons exiting by death during the interval.

5. The number of persons exiting during the interval for reasons other than death.

6. The number of persons exiting at the end of the interval by other than death.

EXAMPLE 14.22

Consider two versions of Example 14.18. In the first one, use exact ages and a date-to-
date study. Then use age last birthday insuring ages and an anniversary-to-anniversary
study. For each, construct a table of the required values.

For the exact age study, the entry age, exit age, and cause of exit values for the five
lives were (32-9, 35-9, s), (32-7, 34-3, x), (33-6, 34-6, s), (33-1, 33-10, x), and (32-
8, 34-10, s). There are no lives at age 32. Between ages 32 and 33, three lives enter and
none exit. Between ages 33 and 34, two lives enter and one exits by death. Between
ages 34 and 35, no lives enter, one dies, and two exit by other causes. Between ages
35 and 36, no lives enter and one life exits by a cause other than death. No lives enter
or exit at age boundaries. The full set of values is in Table 14.20.

For the insuring age study, the values are (33-0, 35-0, s), (33-0, 34-2, x), (33-
0, 34-0, s), (33-0, 33-9, x), and (32-0, 34-0, s). In this case, there are several entries
and exits at integral ages. The values are shown in Table 14.21. It is important to note
that in the first table those who enter and exit do so during the age interval, while in
the second table those who enter do so at the beginning of the interval and those who
exit by reason other than death do so at the end of the age interval. �

9As will be seen in the examples, not every category need be present in a given situation.
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Table 14.21 The insuring age values for Example 14.22.

Number Number Number Number Number at
Age at age entering dying exiting next age

32 0 1 0 0 1

33 1 4 1 2 2

34 2 0 1 1 0

The analysis of this situation is relatively simple. For the interval from age cj to age cj+1,
let Pj be the number of lives under observation at age cj . This number includes those
carried over from the prior interval as well as those entering at age cj . Let nj , dj , and
wj be the number entering, dying, and exiting during the interval. Note that, in general,
Pj+1 6= Pj + nj − dj − wj , as the right-hand side must be adjusted by those who exit
or enter at exact age cj+1. Estimating the mortality probability depends on the method
selected and an assumption about when the events that occur during the age interval take
place.

One approach is to assume a uniform distribution of the events during the interval. For
the exact exposure method, the Pj who start the interval have the potential to contribute
a full unit of exposure and the nj entrants during the year add another half-year each (on
average). Similarly, those who die or exit subtract one-half year on average. Thus the net
exposure is Pj + (nj − dj − wj)/2. For the actuarial exposure method, those who die do
not reduce the exposure, and it becomes Pj + (nj − wj)/2.

Another approach is to adapt the Kaplan–Meier estimator to this situation. Suppose
that the deaths all occur at midyear and all other decrements occur uniformly through the
year. Then the risk set at midyear is Pj + (nj −wj)/2 and the estimator is the same as the
actuarial estimator.

EXAMPLE 14.23

Apply both methods to the two data sets in Example 14.22.

For the exact age data, the exact exposures for ages 32–35 are 0 + (3 − 0 −
0)/2 = 1.5, 3+(2−1−0)/2 = 3.5, 4+(0−1−2)/2 = 2.5, and 1+(0−0−1)/2 = 0.5,
respectively. The use of actuarial exposures changes the values to 0+(3−0)/2 = 1.5,
3 + (2− 0)/2 = 4.0, 4 + (0− 2)/2 = 3.0, and 1 + (0− 1)/2 = 0.5.

For the insuring age data, the exact exposures for ages 32–34 are 1 + (0 − 0 −
0)/2 = 1.0, 5 + (0 − 1 − 0)/2 = 4.5, and 2 + (0 − 1 − 0)/2 = 1.5. The actuarial
exposures are 1 + (0 − 0)/2 = 1.0, 5 + (0 − 0)/2 = 5.0, and 2 + (0 − 0)/2 = 2.0.
Note that the entrants all occur at the beginning of the interval and so are included in
Pj , while those who exit do so at the end of the interval and are not included in wj . �

The goal of all the estimation procedures in this book is to deduce the probability distri-
bution for the random variable in the absence of truncation and censoring. For loss data,
that would be the probabilities if there were no deductible or limit, that is, ground-up
losses. For lifetime data, it would be the probability distribution of the age at death if
we could follow the person from birth to death. These are often referred to as single-
decrement probabilities and are typically denoted q′j in life insurance mathematics. In
the life insurance context, the censoring rates are often as important as the mortality rates.
For example, in the context of Data Set D, both time to death and time to withdrawal may
be of interest. In the former case, withdrawals cause observations to be censored. In the
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Table 14.22 The single-decrement mortality probabilities for Example 14.24.

j Pj nbj nmj dj wmj wej q
′(d)
j

0 0 30 3 1 3 0 1/30.0 = 0.0333

1 29 0 1 0 2 0 0/28.5 = 0.0000

2 28 0 3 2 3 0 2/28.0 = 0.0714

3 26 0 3 3 3 0 3/26.0 = 0.1154

4 23 0 0 2 4 17 2/21.0 = 0.0952

latter case, censoring is caused by death. A superscript identifies the decrement of interest.
For example, suppose that the decrements were death (d) and withdrawal (w). Then q′(w)

j

is the actuarial notation for the probability that a person alive and insured at age cj with-
draws prior to age cj+1 in an environment where withdrawal is the only decrement, that is,
that death is not possible. When the causes of censoring are other important decrements,
an often-used assumption is that all the decrements are stochastically independent. That is,
that they do not influence each other. For example, a person who withdraws at a particular
age has the same probability of dying in the following month as a person who does not.

EXAMPLE 14.24

Estimate single-decrement probabilities using Data Set D and the actuarial method.
Make reasonable assumptions.

First consider the decrement death. In the notation of this section, the relevant
quantities are shown in Table 14.22. The notation nbj refers to entrants who do so at
the beginning of the interval, while nmj refers to those entering during the interval.
These categories are based not on the time of the event but, rather, on its nature. The
30 policies that were issued during the study are at time zero by definition. A policy
that was at duration 1.0 when the study began could have entered at any duration.
Such policies are included in nmj for the preceding interval. For those who exit other
than by death, the notation is wmj for those exiting during the interval and wej for those
doing so at the end. Again, those who do so by chance are assigned to the previous
interval. Deaths are also assigned to the previous interval.

For withdrawals, the values of q′(w)
j are given in Table 14.23. To keep the notation

consistent, dj now refers to withdrawals and wj refers to other decrements. �

Table 14.23 The single-decrement withdrawal probabilities for Example 14.24.

j Pj nbj nmj dj wmj wej q
′(d)
j

0 0 30 3 3 1 0 3/31.0 = 0.0968

1 29 0 1 2 0 0 2/29.5 = 0.0678

2 28 0 3 3 2 0 3/28.5 = 0.1053

3 26 0 3 3 3 0 3/26.0 = 0.1154

4 23 0 0 4 2 17 4/22.0 = 0.1818
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Table 14.24 The data for Example 14.25.

Deductible

Range 0 250 500 Total

0–100 15 15

100–250 16 16

250–500 34 96 130

500–1,000 73 175 251 499

1,000–2,500 131 339 478 948

2,500–5,000 83 213 311 607

5,000–7,500 12 48 88 148

7,500–10,000 1 4 11 16

At 5,000 7 17 18 42

At 7,500 5 10 15 30

At 10,000 2 1 4 7

Total 379 903 1,176 2,458

Table 14.25 The calculations for Example 14.25.

cj Pj nbj dj wej q
′(d)
j F̂ (cj)

0 0 379 15 0 15/379 = 0.0396 0.0000

100 364 0 16 0 16/364 = 0.0440 0.0396

250 348 903 130 0 130/1,251 = 0.1039 0.0818

500 1,121 1,176 499 0 499/2,297 = 0.2172 0.1772

1,000 1,798 0 948 0 948/1,798 = 0.5273 0.3560

2,500 850 0 607 42 607/850 = 0.7141 0.6955

5,000 201 0 148 30 148/201 = 0.7363 0.9130

7,500 23 0 16 7 16/23 = 0.6957 0.9770

10,000 0 0.9930

EXAMPLE 14.25

Loss data for policies with deductibles of 0, 250, and 500 and policy limits of 5,000,
7,500, and 10,000 were collected. The data appear in Table 14.24. Use the actuarial
method to estimate the distribution function for losses.

The calculations are in Table 14.25. Because the deductibles and limits are at the
endpoints of intervals, the only reasonable assumption is the first one presented. �

14.7.4 Exercises

14.43 Verify the calculations in Table 14.23.

14.44 For an anniversary-to-anniversary study, the values in Table 14.26 were obtained.
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Table 14.26 The data for Exercise 14.44.

d u x d u x

45 46.0 45 45.8

45 46.0 46 47.0

45 45.3 46 47.0

45 46.7 46 46.3

45 45.4 46 46.2

45 47.0 46 46.4

45 45.4 46 46.9

Table 14.27 The data for Exercise 14.45.

Deductible Paymenta Deductible Payment

250 2,221 500 3,660

250 2,500 500 215

250 207 500 1,302

250 3,735 500 10,000

250 5,000 1,000 1,643

250 517 1,000 3,395

250 5,743 1,000 3,981

500 2,500 1,000 3,836

500 525 1,000 5,000

500 4,393 1,000 1,850

500 5,000 1,000 6,722
aNumbers in italics indicate that the amount paid was at the policy limit.

Estimate q′(d)
45 and q′(d)

46 using the exact Kaplan–Meier estimate, exact exposure, and actu-
arial exposure.

14.45 Twenty-two insurance payments are recorded in Table 14.27. Use the fewest reason-
able number of intervals and an interval-based method with actuarial exposure to estimate
the probability that a policy with a deductible of 500 will have a payment in excess of
5,000.

14.46 (*) Nineteen losses were observed. Six had a deductible of 250, six had a deductible
of 500, and seven had a deductible of 1,000. Three losses were paid at a policy limit, those
values being 1,000, 2,750, and 5,500. For the 16 losses not paid at the limit, one was in
the interval (250, 500), two in (500, 1,000), four in (1,000, 2,750), seven in (2,750, 5,500),
one in (5,500, 6,000), and one in (6,000, 10,000). Estimate the probability that a policy
with a deductible of 500 will have a claim payment in excess of 5,500.

14.8 Maximum Likelihood Estimation of Decrement Probabilities

In Section 14.7, methods were introduced for estimating mortality probabilities with large
data sets. One of the methods was a seriatim method using exact exposure. In this section,
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that estimator will be shown to be maximum likelihood under a particular assumption. To
do this, we need to develop some notation. Suppose that we are interested in estimating
the probability that an individual alive at age a dies prior to age b, where a < b. This is
denoted q = [S(a) − S(b)]/S(a). Let X be the random variable with survival function
S(x), the probability of surviving from birth to age x. Now let Y be the random variableX
conditioned onX > a. Its survival function is SY (y) = Pr(X > y|X > a) = S(y)/S(a).

We now introduce a critical assumption about the shape of the survival function within
the interval under consideration. Assume that SY (y) = exp[−(y − a)λ] for a < y ≤ b.
This means that the survival function decreases exponentially within the interval. Equiv-
alently, the hazard rate (called the force of mortality in life insurance mathematics) is
assumed to be constant within the interval. Beyond b, a different hazard rate can be used.
Our objective is to estimate the conditional probability q. Thus we can perform the esti-
mation using only data from and a functional form for this interval. Values of the survival
function beyond b will not be needed.

Now consider data collected on n individuals, all of whom were observed during
the age interval (a, b]. For individual j, let gj be the age at which the person was first
observed within the interval and let hj be the age at which the person was last observed
within the interval (thus a ≤ gj < hj ≤ b). Let δj = 0 if the individual was alive
when last observed and δj = 1 if the individual was last observed due to death. For this
analysis, we assume that each individual’s censoring age (everyone who does not die in
the interval will be censored, either by reaching age b or through some event that removes
them from observation) is known in advance. Thus the only random quantities are δj , and
for individuals with δj = 1, the age at death. The likelihood function is

L(λ) =

n∏
j=1

[
S(hj)

S(gj)

]1−δj [f(hj)

S(gj)

]δj
=

n∏
j=1

[
e−(hj−gj)λ

]1−δj [
λe−(hj−gj)λ

]δj

= λd
n∏
j=1

e−(hj−gj)λ = λd exp

− n∑
j=1

(hj − gj)λ

 = λd exp(−eλ),

where d =
∑n
j=1 δj is the number of observed deaths and e =

∑n
j=1(hj − gj) is the

total time the individuals were observed in the interval (which was called exact exposure
in Section 14.7). Taking logarithms, differentiating, and solving produces

l(λ) = d lnλ− eλ,

l′(λ) =
d

λ
− e = 0,

λ̂ =
d

e
.

Finally, the maximum likelihood estimate of the probability of death is q̂ = 1− exp[−(b−
a)λ̂] = 1− exp[−(b− a)d/e].

Studies often involve random censoring, where individuals may exit for reasons other
than death at times that were not known in advance. If all decrements (e.g. death, disability,
and retirement) are stochastically independent (that is, the timing of one event does not
influence any of the others), then the maximum likelihood estimator turns out to be iden-
tical to the one derived in this section. Although we do not derive the result, note that it
follows from the fact that the likelihood function can be decomposed into separate factors
for each decrement.
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The variance of this estimator can be approximated using the observed information
approach. The second derivative of the loglikelihood function is

l′′(λ) = − d

λ2
.

Substitution of the estimator produces

l′′(λ̂) = − d

(d/e)2
= −e

2

d

and so V̂ar(λ̂) = d/e2. Using the delta method,

dq

dλ
= (b− a) exp[−(b− a)λ],

V̂ar(q̂) = (1− q̂)2(b− a)2 d

e2
.

Recall from Section 14.7 that there is an alternative called actuarial exposure, with
q̂ = (b− a)d/e with e calculated in a different manner. When analyzing results from this
approach, it is common to assume that d is the result of a binomial experiment with sample
size e/(b− a). Then,

V̂ar(q̂) =
q̂(1− q̂)
e/(b− a)

.

If the 1 − q̂ terms are dropped (and they are often close to 1), the two variance formulas
are identical (noting that the values of e will be slightly different).

EXAMPLE 14.26

A pension plan assigns every employee an integral age on their date of hire (thus retire-
ment age is always reached on an anniversary of being hired and not on a birthday).
Because of the nature of the employee contracts, employees can only quit their job on
annual anniversaries of being hired or six months after an anniversary. They can die
at any age. Using assigned ages, a mortality study observed employees from age 35 to
age 36. There were 10,000 who began at age 35. Of them, 100 died between ages 35
and 35.5 at an average age of 35.27, 400 quit at age 35.5, 110 died between ages 35.5
and 36 at an average age of 35.78, and the remaining 9,390 were alive and employed at
age 36. Using both exact and actuarial exposure, estimate the single-decrement value
of q35 and the standard deviation of the estimator.

The exact exposure is 100(0.27) + 400(0.5) + 110(0.78) + 9,390(1) = 9,702.8.
Then, q̂35 = 1− exp(−210/9,702.8) = 0.02141. The estimated standard deviation is
0.97859(210)1/2/9,702.8 = 0.00146. Recall that actuarial exposure assumes deaths
occur at the end of the interval. The exposure is now 100(1) + 400(0.5) + 110(1) +
9,390(1) = 9,800. Then, q̂35 = 210/9,800 = 0.02143. The estimated standard
deviation is

√
0.02143(0.97857)/9, 800 = 0.00146. �

14.8.1 Exercise

14.47 In Exercise 14.44, mortality estimates for q45 and q46 were obtained by Kaplan–
Meier, exact exposure, and actuarial exposure. Approximate the variances of these esti-
mates (using Greenwood’s formula in the Kaplan–Meier case).
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14.9 Estimation of Transition Intensities

The discussion to this point has concerned estimating the probability of a decrement in the
absence of other decrements. An unstated assumption was that the environment in which
the observations are made is one where once any decrement occurs, the individual is no
longer observed.

A common, and more complex, situation is one in which after a decrement occurs, the
individual remains under observation, with the possibility of further decrements. A simple
example is a disability income policy. A healthy individual can die, become disabled, or
surrender their policy. Those who become disabled continue to be observed, with possible
decrements being recovery or death. Scenarios such as this are referred to as multistate
models. Such models are discussed in detail in Dickson et al. [5]. In this section, we cover
estimation of the transition intensities associated with such models. The results presented
are based on Waters [23].

For notation, let the possible states be {0, 1, . . . , k} and let µijx be the force of transi-
tion to state j for an individual who is currently between ages x and x + 1 and is in state
i. This notation is based on an assumption that the force of transition is constant over an
integral age. This is similar to the earlier assumption that the force of decrement is constant
over a given age.

EXAMPLE 14.27

For the disability income policy previously described, identify the states and indicate
which transition intensities likely have positive values. Of those with positive values,
which can be estimated from available data?

The assigning of numbers to states is arbitrary. For this situation, consider 0 =
healthy and an active policyholder, 1 = disabled and receiving benefits, 2 = surren-
dered, and 3 = dead. Possible transitions are 0 → 1, 0 → 2, 0 → 3, 1 → 0, 1 → 3,
and 2 → 3. All but the last one can be observed (we are unlikely to know when a
surrendered policyholder dies). States 0 and 1 have been carefully defined to exclude
cases where a surrendered policyholder becomes disabled or healthy. �

While not shown here, maximum likelihood estimates turn out to be based on exact expo-
sure for the time spent in each state. For those between ages x and x + 1 (which can be
generalized for periods of other than one year), let Ti be the total time policyholders are
observed in state i and dij be the number of observed transitions from state i to state j.
Then, µ̂ijx = dij/Ti. Similarly, V̂ar(µ̂ijx ) = dij/Ti

2.

EXAMPLE 14.28

Consider five policyholders who, between ages 50 and 51, are observed to do the
following (decimals are fractions of a year):

Disabled at age 50, dies at age 50.27.

Healthy at age 50, disabled at age 50.34, dies at age 50.78.

Healthy at age 50, surrendered at age 50.80.
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Purchases policy (healthy) at age 50.31, healthy at age 51.

Healthy at age 50, disabled at 50.12, healthy at 50.45, dies at age 50.91.

Calculate the maximum likelihood estimates of the transition intensities.

Time spent healthy is 50.34−50+50.80−50+51−50.31+50.12−50+50.91−
50.45 = 2.41. While healthy, two became disabled, one surrendered, and one died.
Hence the estimated transition intensities are µ̂01

50 = 2/2.41, µ̂02
50 = 1/2.41, and µ̂03

50 =
1/2.41. Time spent disabled is 50.27−50 + 50.78 − 50.34 + 50.45 − 50.12 = 1.04.
While disabled, one became healthy and two died. The estimates are µ̂10

50 = 2/1.04
and µ̂13

50 = 1/1.04. �

The construction of interval-based methods is more difficult because it is unclear when to
place the transitions. Those who make one transition in the year may be reasonably placed
at mid-age. However, those who make two transitions would more reasonably be placed
at the one-third and two-thirds points. This would require careful data-keeping and the
counting of many different cases.
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CHAPTER 14 SOLUTIONS

SECTION 14.2

14.1 There are 392 observations and the calculations are shown in Table 14.1. For each
interval, the ogive value is for the right-hand endpoint of the interval, while the his-
togram value is for the entire interval. Graphs of the ogive and histogram are shown in
Figures 14.1 and 14.2.

14.2 (a) The ogive connects the points (0.5, 0), (2.5, 0.35), (8.5, 0.65), (15.5, 0.85), and
(29.5, 1).

(b) The histogram has height 0.35/2 = 0.175 on the interval (0.5, 2.5), height 0.3/6 = 0.05
on the interval (2.5, 8.5), height 0.2/7 = 0.028571 on the interval (8.5, 15.1), and height
0.15/14 = 0.010714 on the interval (15.5, 29.5).

Student Solutions Manual to Accompany Loss Models: From Data to Decisions, Fifth Edition.
Stuart A. Klugman, Harry H. Panjer, and Gordon E. Willmot.
c© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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Table 14.1 The calculations for Exercise 14.1.

Payment range Number of payments Ogive value Histogram value

0–25 6 6
392

= 0.0153 6
392(25)

= 0.000612

25–50 24 30
392

= 0.0765 24
392(25)

= 0.002449

50–75 30 60
392

= 0.1531 30
392(25)

= 0.003061

75–100 31 91
392

= 0.2321 31
392(25)

= 0.003163

100–150 57 148
392

= 0.3776 57
392(50)

= 0.002908

150–250 80 228
392

= 0.5816 80
392(100)

= 0.002041

250–500 85 313
392

= 0.7985 85
392(250)

= 0.000867

500–1,000 54 367
392

= 0.9362 54
392(500)

= 0.000276

1,000–2,000 15 382
392

= 0.9745 15
392(1000)

= 0.000038

2,000–4,000 10 392
392

= 1.0000 10
392(2000)

= 0.000013
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Figure 14.1 The ogive for Exercise 14.1.
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Figure 14.2 The histogram for Exercise 14.1.

14.3 The plot is shown in Figure 14.3. The points are the complements of the survival
probabilities at the indicated times.

Because one curve lies completely above the other, it appears possible that original issues
have a shorter lifetime.

14.4 The heights of the histogram bars are, respectively, 0.5/2 = 0.25, 0.2/8 = 0.025,
0.2/90 = 0.00222, and 0.1/900 = 0.000111. The histogram is shown in Figure 14.4.
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Figure 14.3 The ogive for the mortgage lifetime for Exercise 14.3.
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Figure 14.4 The histogram for Exercise 14.4.

14.5 The empirical model places probability 1/n at each data point. Then

E(X ∧ 2) =
∑
xj<2

xj(1/40) +
∑
xj≥2

2(1/40)

= (20 + 15)(1/40) + (14)(2)(1/40)

= 1.575.
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14.6 We have

E(X ∧ 7,000) =
1

2,000

 ∑
xj≤7,000

xj +
∑

xj>7,000

7,000


=

1

2,000

 ∑
xj≤6,000

xj +
∑

xj>6,000

6,000

+
∑

6000<xj≤7000

(xj − 6,000) +
∑

xj>7000

1,000


= E(X ∧ 6,000) + [200,000− 30(6,000) + 270(1,000)]/2,000

= 1,955.

14.7 Let n be the sample size. The equations are

0.21 =
36

n
+

0.4x

n
and 0.51 =

36

n
+
x

n
+

0.6y

n
.

Also, n = 200 + x+ y. The equations can be rewritten as

0.21(200 + x+ y) = 36 + 0.4x and 0.51(200 + x+ y) = 36 + x+ 0.6y.

The linear equations can be solved for x = 120.

14.8 (a) µ̂ =
∑
xi/35 = 204,900. µ̂′2 =

∑
x2
i /35 = 1.4134× 1011.

σ̂ = 325,807. µ̂′3 = 1.70087× 1017, µ̂3 = 9.62339× 1016,
ĉ = 325,807/204,900 = 1.590078, γ̂1 = 2.78257.

(b) En(500,000) = [
∑30
j=1 yj + 5(500,000)]/35 = 153,139.

E
(2)
n (500,000) = [

∑30
j=1 y

2
j + 5(500,000)2]/35 = 53,732,687,032.

14.9 µ̂′1 = [2(2,000) + 6(4,000) + 12(6,000) + 10(8,000)]/30 = 6,000,
µ̂2 = [2(−4,000)2 + 6(−2,000)2 + 12(0)2 + 10(2,000)2]/30 = 3,200,000,
µ̂3 = [2(−4,000)3 + 6(−2,000)3 + 12(0)3 + 10(2,000)3]/30 = −3,200,000,000.
γ̂1 = −3,200,000,000/(3,200,000)1.5 = −0.55902.

SECTION 14.3

14.10 Suppose that the lapse was at time 1. The estimate of S(4) is (3/4)(2/3)(1/2) =
0.25. If it is at time 2, the estimate is (4/5)(2/3)(1/2) = 0.27. If it is at time 3, the estimate is
(4/5)(3/4)(1/2) = 0.3. If it is at time 4, the estimate is (4/5)(3/4)(2/3) = 0.4. If it is at time 5,
the estimate is (4/5)(3/4)(2/3)(1/2) = 0.20. Therefore, the answer is time 5.

14.11 Ĥ(12) = 2
15 + 1

12 + 1
10 + 2

6 = 0.65. The estimate of the survival function is
Ŝ(12) = e−0.65 = 0.522.

14.12 Ĥ(t10) − Ĥ(t9) = 1
n−9 = 0.077, n = 22. Ĥ(t3) = 1

22 + 1
21 + 1

20 = 0.14307 and
Ŝ(t3) = e−0.14307 = 0.8667.
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14.13 0.60 = 0.72 r4−2
r4

, r4 = 12. 0.50 = 0.60 r5−1
r5

, r5 = 6. With two deaths at the fourth
death time and the risk set decreasing by 6, there must have been four censored observations.

14.14 0.575 = Ŝ(10) = e−Ĥ(10) and Ĥ(10) = − ln(0.575) = 0.5534 = 1
50 + 3

49 + 5
k + 7

12 .
The solution is k = 36.

14.15 With no censoring, the r values are 12, 9, 8, 7, 6, 4, and 3, and the s values are 3, 1, 1,
1, 2, 1, and 1. Then

Ĥ(7,000) =
3

12
+

1

9
+

1

8
+

1

7
+

2

6
+

1

4
+

1

3
= 1.5456.

With censoring, there are only five uncensored values with r values 9, 8, 7, 4, and 3, and all
five s values are 1. Then

Ĥ(7,000) =
1

9
+

1

8
+

1

7
+

1

4
+

1

3
= 0.9623.

14.16 0.5
0.65 = r4− s4

r4
= r4− 3

r4
=⇒ r4 = 13. The risk set at the fifth death time is the 13

from the previous death time less the three who died and less the six who were censored.
That leaves r5 = 13− 3− 6 = 4. Then 0.25

0.5 = r5− s5
r5

= 4− s5
4 =⇒ s5 = 2.

14.17 From the data set, there were 1,915 out of 94,935 that had two or more accidents. The
estimated probability is 1,915/94,935 = 0.02017, and the estimated variance is

0.02017(0.97983)/94,935 = 2.08176× 10−7.

14.18 Without any distributional assumptions, the variance is estimated as (1/5)(4/5)/5 =
0.032. From the distributional assumption, the true value of 3q7 is [(8/15)− (5/15)]/(8/15) =
3/8, and the variance is (3/8)(5/8)/5 = 0.046875. The difference is −0.014875.

14.19 The Nelson–Aalen estimates are the centers of the confidence intervals, which are
0.15 and 0.27121. Therefore, sj+1/rj+1 = 0.12121. From the first confidence interval,
the estimated variance is (0.07875/1.96)2 = 0.0016143, while for the second interval it
is (0.11136/1.96)2 = 0.0032282 and, therefore, sj+1(rj+1 − sj+1)/r3

i+1 = 0.0016139.
Substituting sj+1 = 0.12121rj+1 produces

0.12121rj+1(0.87879rj+1)

r3
j+1

= 0.0016139.

This leads to 0.10652 = 0.0016139rj+1 for rj+1 = 66 and then sj+1 = 0.12121(66) = 8.

14.20 Greenwood’s estimate is

V = S2

(
2

50(48)
+

4

45(41)
+

8

(41− c)(33− c)

)
.

Then

0.011467 =
V

S2
= 0.003001 +

8

(41− c)(33− c)
,

(41− c)(33− c) = 8/(0.008466) = 945.
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Solving the quadratic equation yields c = 6.

14.21 For the Nelson–Aalen estimate,

1.5641 = Ĥ(35) =
2

15
+

3

13
+

2

10
+
d

8
+

2

8− d
,

(1.5641− 0.5641)8(8− d) = d(8− d) + 16,

0 = d2 − 16d+ 48,

d = 4.

Note that the other solution to the quadratic equation (d = 12) is not plausible as only eight
individuals were available to become deaths.

The variance is

2(13)

153
+

3(10)

133
+

2(8)

103
+

4(4)

83
+

2(2)

43
= 0.13111.

14.22 The uncensored observations are 4 and 8, the two r values are 10 and 5, and the two s
values are 2 and 1. Then Ŝ(11) = 8

10
4
5 = 0.64. Greenwood’s estimate is

(0.64)2

[
2

10(8)
+

1

5(4)

]
= 0.03072.

14.23 At day 8 (the first uncensored time), r = 7 (8− 1) and s = 1. At day 12, r = 5 and
s = 2. Then Ĥ(12) = 1

7 + 2
5 = 0.5429. Also, Vâr[Ĥ(12)] = 1(6)

73 + 2(3)
53 = 0.06549. The

interval is 0.5429± 1.645
√

0.06549, which is (0.1219, 0.9639).

14.24 (a) The missing values are added in Table 14.2.

S40(4) = 1− 3

40
=

37

40
= 0.925,

S40(6) = S40(4)

(
1− 5

31

)
=

37

40
× 26

31
=

481

620
= 0.77581,

S40(9) = S40(6)

(
1− 6

23

)
=

481

620
× 17

23
=

8,177

14,260
= 0.57342,

S40(13) = S40(9)

(
1− 4

13

)
=

8,177

14,260
× 9

13
=

5,661

14,260
= 0.39698,

S40(15) = S40(13)

(
1− 2

6

)
=

5,661

14,260
× 2

3
=

1,887

7,130
= 0.26466.

Table 14.2 The solution to Exercise 14.24.

i yi si bi ri

1 4 3 6 40

2 6 5 3 31

3 9 6 4 23

4 13 4 3 13
5 15 2 4 6
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(b)
Ĥ(4) =

3

40
= 0.075,

Ĥ(6) = Ĥ(4) +
5

31
= 0.23629,

Ĥ(9) = Ĥ(6) +
6

23
= 0.49716,

Ĥ(13) = Ĥ(9) +
4

13
= 0.80485,

Ĥ(15) = Ĥ(13) +
2

6
= 1.13819.

(c)
S40(24) = [S40(15)]

24/15
=

(
1,887

7,130

)1.6

= (0.26466)
1.6

= 0.11920.

(d)
5∑
i=1

si
ri (ri − si)

=
3

40(37)
+

5

31(26)
+

6

23(1)7
+

4

13(9)
+

2

6(4)
= 0.14110,

V̂ ar [S40(15)] = (0.26466)2(0.14110) = 0.00988.

(e) 0.26466± 1.96
√

0.00988 = (0.06984, 0.45948).

(f)
U = exp

[
1.96
√

0.00988

0.26466 ln(0.26466)

]
= 0.57479,

(
S40(15)1/U , S40(15)U

)
= (0.09899, 0.46577).

14.25 (a) S50(3) = 1− 3
50 = 0.94,

S50(5) = S50(3)
(
1− 7

41

)
= 0.77951,

S50(7) = S50(5)
(
1− 5

30

)
= 0.64959,

S50(11) = S50(7)
(
1− 5

23

)
= 0.50838,

S50(16) = S50(11)
(
1− 6

15

)
= 0.30503,

S50(20) = S50(16)
(
1− 2

5

)
= 0.18302.

(b)
Ĥ(3) = 3

50 = 0.06, Ŝ(3) = e−0.06 = 0.94176,

Ĥ(5) = Ĥ(3) + 7
41 = 0.23073, Ŝ(5) = e−0.23073 = 0.79395,

Ĥ(7) = Ĥ(5) + 5
30 = 0.39740, Ŝ(7) = e−0.39740 = 0.67207,

Ĥ(11) = Ĥ(7) + 5
23 = 0.61479, Ŝ(11) = e−0.61479 = 0.54075,

Ĥ(16) = Ĥ(11) + 6
15 = 1.01479, Ŝ(16) = e−1.01479 = 0.36248,

Ĥ(20) = Ĥ(16) + 2
5 = 1.41479, Ŝ(20) = e−1.41479 = 0.24298.

(c) S50(40) = 0 EFRON,
S50(40) = [S50(20)]

40/20
= (0.18302)2 = 0.03350 BHK.
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(d) V̂ ar
[
Ĥ(20)

]
=

6∑
i=1

si(ri − si)
r3
i

=
3(47)

503
+

7(34)

413
+

5(25)

303
+

5(18)

233
+

6(9)

153
+

2(3)

53

= 0.08061,

Var
[
Ŝ(20)

]
≈ (0.24298)2(0.08061) = 0.00476 = (0.06898)2.

(e) U = exp
[
±1.96

√
0.08061/1.41479

]
= (0.67480, 1.48190)⇒ 95% confidence inter-

val is from (1.41479)(0.67480) = 0.95471 to (1.41479)(1.48190) = 2.0966.

(f) Var
[
Ŝ(40)

]
= Var

{[
Ŝ(20)

]2}
under BHK.

Let g(x) = x2 ⇒ g′(x) = 2x⇒

Var
[
Ŝ(40)

]
= Var

{[
Ŝ(20)

]2}
≈
[
2Ŝ(20)

]2
Var
[
Ŝ(20)

]
≈ 4

[
Ŝ(20)

]2
Var
[
Ŝ(20)

]
= 4(0.24298)2(0.00476)

= (0.03352)2

= 0.00112.

14.26 (a) For the Kaplan–Meier estimator, Sn(y) =
∏

i:yi≤y

(
1− λ̂i

)
, and for the Nelson–

Aalen estimator, Ŝ(y) =
∏

i:yi≤y
e−λ̂i .

(b) Note that ln S̃(y) =
∑

i|yi≤y
lnφ

(
λ̂i

)
, and by the delta method with f(x) = lnφ(x),

Var
[
lnφ

(
λ̂i

)]
≈

φ′
(
λ̂i

)
φ
(
λ̂i

)
2

Var
(
λ̂i

)
≈

φ′
(
λ̂i

)
φ
(
λ̂i

)
2

si(ri − si)
r3
i

.

Because the λ̂i are approximately uncorrelated,

Var
[
ln S̃(y)

]
≈
∑
i|yi≤y

Var
[
lnφ

(
λ̂i

)]
≈
∑
i|yi≤y

φ′
(
λ̂i

)
φ
(
λ̂i

)
2

si(ri − si)
r3
i

.

By the delta method, again with f(x) = ex,

Var
[
S̃(y)

]
≈
[
S̃(y)

]2
Var
[
ln S̃(y)

]
,

from which the result follows.
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(c) Form = 0, (−1)0 [φ0(x)− e−x] = 1−e−x ≥ 0. Next, assume that (−1)m [φm(x)− e−x] ≥
0 for m. Then let fm+1(x) = (−1)m+1 [φm+1(x)− e−x] and so fm+1(0) = 0. Also,

f ′m+1(x) = (−1)m+1

m+1∑
j=1

(−1)jxj−1

(j − 1)!
+ e−x


= (−1)m+1

 m∑
j=0

(−1)j+1xj

j!
+ e−x


= (−1)m

 m∑
j=0

(−x)j

j!
− e−x


= (−1)m

[
φm(x)− e−x

]
,

and so f ′m+1(x) ≥ 0 by the inductive hypothesis. Because fm+1(0) = 0 and f ′m+1(x) ≥ 0,
it follows that fm+1(x) ≥ 0, implying by induction on m that (−1)m [φm(x)− e−x] ≥ 0
for m = 0, 1, 2, . . .. This, in turn, implies that

e−x ≤ φ2m(x) =

2m∑
j=0

(−x)j

j!
, m = 0, 1, 2, . . . ,

and

e−x ≥ φ2m+1(x) =

2m+1∑
j=0

(−x)j

j!
, m = 0, 1, 2, . . . ,

and the result follows by also noting that S̃1(y) = Sn(y), the Kaplan–Meier estimate.

SECTION 14.4

14.27 We have k = 5 and yk = ymax = 15 in this case. The estimates of the survival
function are given in the solutions to Exercise 14.24.

(a) τ̃(y4) = (15− 13)S40(13) = 2(0.39698) = 0.79397,

τ̃(y3) = τ̃(y4) + (13− 9)S40(9) = 0.79397 + 4(0.57342) = 3.08766,

τ̃(y2) = τ̃(y3) + (9− 6)S40(6) = 3.08766 + 3(0.77581) = 5.41508,

τ̃(y1) = τ̃(y2) + (6− 4)S40(4) = 5.41508 + 2(0.925) = 7.26508,

µ̃1 = 4(1) + τ̃(y1) = 4 + 7.26508 = 11.26508.

(b) e−β̂(15) = S40(15) = 0.26466⇒ β̃ = − ln 0.26466/15 = 0.08862,

τ̃(y5) = (15)(0.26466)/(− ln 0.26466) = 2.98637,

µ̃1 = 11.26508 + 2.98637 = 14.25144.

(c)
4∑

m=1

[τ̃(ym)]
2 sm
rm (rm − sm)

= (7.26508)2 3

(40)(37)
+ (5.41508)2 5

(31)(26)

+ (3.08766)2 6

(23)(17)
+ (0.79397)2 4

(13)(9)

= 0.45674.
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14.28 We have k = 6 and yk = ymax = 20 in this case. The estimates of Ŝ(y) are given in
the solution to Exercise 14.25.
(a)

e−20β̃ = S̃(20) = 0.24298⇒ β̃ = − ln 0.24298/20 = 0.07074,

τ̃(y6) = (20)(0.24298)/(− ln 0.24298) = 3.43481,

τ̃(y5) = (20− 16)S̃(16) + τ̃(y6) = 4(0.36248) + 3.43481 = 4.88473,

τ̃(y4) = (16− 11)S̃(11) + τ̃(y5) = 5(0.54075) + 4.88473 = 7.58848,

τ̃(y3) = (11− 7)S̃(7) + τ̃(y4) = 4(0.67207) + 7.58848 = 10.27676

τ̃(y2) = (7− 5)S̃(5) + τ̃(y3) = 2(0.79395) + 10.27676 = 11.86466,

τ̃(y1) = (5− 3)S̃(3) + τ̃(y2) = 2(0.94176) + 11.86466 = 13.74818,

µ̃ = y1 + τ̃(y1) = 3 + 13.74818 = 16.74818.

(b)6∑
m=1

{
τ̃(ym) +

[τ̃(y6)]
2

y6S̃(y6)

}2
sm(rm − sm)

r3
m

=

6∑
m=1

[τ̃(ym) + 2.42779]
2 sm(rm − sm)

r3
m

= (13.74818 + 2.42779)2 (3)(47)

(50)3

+ (11.86466 + 2.42779)2 (7)(34)

(41)3

+ (10.27676 + 2.42779)2 (5)(25)

(30)3

+ (7.58848 + 2.42779)2 (5)(18)

(23)3

+ (4.88473 + 2.42779)2 (6)(9)

(15)3

+ (3.43481 + 2.42779)2 (2)(3)

(5)3

= 4.99525.

14.29 The estimate of the mean is 10.43. The second moment is estimated by

µ̃2 = y2
1 +

 7∑
j=2

(
y2
j − y2

j−1

)
S̃(yj−1)

+
(
y2
max − y2

7

)
S̃(y7)

+ 2(ymax)2S̃(yk)

{[
− ln S̃(yk)

]2
+
[
− ln S̃(yk)

]−1
}

= 12 + (22 − 12)(0.95123) + (42 − 22)(0.90246) + (52 − 42)(0.80230)

+ (82 − 52)(0.74289) + (92 − 82)(0.56557) + (122 − 92)(0.34303)

+ (152 − 122)(0.176) + 2(15)2(0.12619)
[
(− ln 0.12619)

−2
+ (− ln 0.12619)−1

]
= 1 + 3(0.95123) + 12(0.90246) + 9(0.80230) + 39(0.74289)

+ 17(0.56557) + 63(0.34303) + 81(0.176) + 40.68595

= 137.04415.

The variance is thus estimated by 137.04415− (10.43)2 = 28.25925.
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14.30 The calculations are shown in Tables 14.3 and 14.4.

Table 14.3 The calculations for Exercise 14.30.

i di ui xi i di ui xi

1 0 — 0.1 16 0 4.8 —

2 0 — 0.5 17 0 — 4.8

3 0 — 0.8 18 0 — 4.8

4 0 0.8 — 19–30 0 — 5.0

5 0 — 1.8 31 0.3 — 5.0

6 0 — 1.8 32 0.7 — 5.0

7 0 — 2.1 33 1.0 4.1 —

8 0 — 2.5 34 1.8 3.1 —

9 0 — 2.8 35 2.1 — 3.9

10 0 2.9 — 36 2.9 — 5.0

11 0 2.9 — 37 2.9 — 4.8

12 0 — 3.9 38 3.2 4.0 —

13 0 4.0 — 39 3.4 — 5.0

14 0 — 4.0 40 3.9 — 5.0

15 0 — 4.1

Table 14.4 Further calculations for Exercise 14.30.

j yj sj rj

1 0.1 1 30− 0− 0 = 30 or 0 + 30− 0− 0 = 30

2 0.5 1 31− 1− 0 = 30 or 30 + 1− 1− 0 = 30

3 0.8 1 32− 2− 0 = 30 or 30 + 1− 1− 0 = 30

4 1.8 2 33− 3− 1 = 29 or 30 + 1− 1− 1 = 29

5 2.1 1 34− 5− 1 = 28 or 29 + 1− 2− 0 = 28

6 2.5 1 35− 6− 1 = 28 or 28 + 1− 1− 0 = 28

7 2.8 1 35− 7− 1 = 27 or 28 + 0− 1− 0 = 27

8 3.9 2 39− 8− 4 = 27 or 27 + 4− 1− 3 = 27

9 4.0 1 40− 10− 4 = 26 or 27 + 1− 2− 0 = 26

10 4.1 1 40− 11− 6 = 23 or 26 + 0− 1− 2 = 23

11 4.8 3 40− 12− 7 = 21 or 23 + 0− 1− 1 = 21

12 5.0 17 40− 15− 8 = 17 or 21 + 0− 3− 1 = 17
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14.31

S40(t) =



1, 0 ≤ t < 0.1,

30− 1
30 = 0.9667, 0.1 ≤ t < 0.5,

0.9667 30− 1
30 = 0.9344, 0.5 ≤ t < 0.8,

0.9344 30− 1
30 = 0.9033, 0.8 ≤ t < 1.8,

0.9033 29− 2
29 = 0.8410, 1.8 ≤ t < 2.1,

0.8410 28− 1
28 = 0.8110, 2.1 ≤ t < 2.5,

0.8110 28− 1
28 = 0.7820, 2.5 ≤ t < 2.8,

0.7820 27− 1
27 = 0.7530, 2.8 ≤ t < 3.9,

0.7530 27− 2
27 = 0.6973, 3.9 ≤ t < 4.0,

0.6973 26− 1
26 = 0.6704, 4.0 ≤ t < 4.1,

0.6704 23− 1
23 = 0.6413, 4.1 ≤ t < 4.8,

0.6413 21− 3
21 = 0.5497, 4.8 ≤ t < 5.0,

0.5497 17− 17
17 = 0, t ≥ 5.0.

14.32

Ĥ(t) =



0, 0 ≤ t < 0.1,

1
30 = 0.0333, 0.1 ≤ t < 0.5,

0.0333 + 1
30 = 0.0667, 0.5 ≤ t < 0.8,

0.0667 + 1
30 = 0.1000, 0.8 ≤ t < 1.8,

0.1000 + 2
29 = 0.1690, 1.8 ≤ t < 2.1,

0.1690 + 1
28 = 0.2047, 2.1 ≤ t < 2.5,

0.2047 + 1
28 = 0.2404, 2.5 ≤ t < 2.8,

0.2404 + 1
27 = 0.2774, 2.8 ≤ t < 3.9,

0.2774 + 2
27 = 0.3515, 3.9 ≤ t < 4.0,

0.3515 + 1
26 = 0.3900, 4.0 ≤ t < 4.1,

0.3900 + 1
23 = 0.4334, 4.1 ≤ t < 4.8,

0.4334 + 3
21 = 0.5763, 4.8 ≤ t < 5.0,

0.5763 + 17
17 = 1.5763, t ≥ 5.0.
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Ŝ(t) =



e−0 = 1, 0 ≤ t < 0.1,
e−0.0333 = 0.9672, 0.1 ≤ t < 0.5,
e−0.0667 = 0.9355, 0.5 ≤ t < 0.8,
e−0.1000 = 0.9048, 0.8 ≤ t < 1.8,
e−0.1690 = 0.8445, 1.8 ≤ t < 2.1,
e−0.2047 = 0.8149, 2.1 ≤ t < 2.5,
e−0.2404 = 0.7863, 2.5 ≤ t < 2.8,
e−0.2774 = 0.7578, 2.8 ≤ t < 3.9,
e−0.3515 = 0.7036, 3.9 ≤ t < 4.0,
e−0.3900 = 0.6771, 4.0 ≤ t < 4.1,
e−0.4334 = 0.6483, 4.1 ≤ t < 4.8,
e−0.5763 = 0.5620, 4.8 ≤ t < 5.0,
e−1.5763 = 0.2076, t ≥ 5.0.

14.33 Using the raw data, the results are as shown in Table 14.5. When the deductible and
limit are imposed, the results are as shown in Table 14.6. Because 1,000 is a censoring point
and not an observed loss value, there is no change in the survival function at 1,000.

14.34 The information may be organized as in Table 14.7.

Table 14.5 The calculations for Exercise 14.33.

value(x) r s SKM (x) HNA(x) SNA(x)

27 20 1 0.95 0.0500 0.9512

82 19 1 0.90 0.1026 0.9025

115 18 1 0.85 0.1582 0.8537

126 17 1 0.80 0.2170 0.8049

155 16 1 0.75 0.2795 0.7562

161 15 1 0.70 0.3462 0.7074

243 14 1 0.65 0.4176 0.6586

294 13 1 0.60 0.4945 0.6099

340 12 1 0.55 0.5779 0.5611

384 11 1 0.50 0.6688 0.5123

457 10 1 0.45 0.7688 0.4636

680 9 1 0.40 0.8799 0.4148

855 8 1 0.35 1.0049 0.3661

877 7 1 0.30 1.1477 0.3174

974 6 1 0.25 1.3144 0.2686

1,193 5 1 0.20 1.5144 0.2199

1,340 4 1 0.15 1.7644 0.1713

1,884 3 1 0.10 2.0977 0.1227

2,558 2 1 0.05 2.5977 0.0744

15,743 1 1 0.00 3.5977 0.0274
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Table 14.6 Further calculations for Exercise 14.33.

value(x) r s SKM (x) HNA(x) SNA(x)

115 18 1 0.9444 0.0556 0.9459

126 17 1 0.8889 0.1144 0.8919

155 16 1 0.8333 0.1769 0.8379

161 15 1 0.7778 0.2435 0.7839

243 14 1 0.7222 0.3150 0.7298

294 13 1 0.6667 0.3919 0.6758

340 12 1 0.6111 0.4752 0.6218

384 11 1 0.5556 0.5661 0.5677

457 10 1 0.5000 0.6661 0.5137

680 9 1 0.4444 0.7773 0.4596

855 8 1 0.3889 0.9023 0.4056

877 7 1 0.3333 1.0451 0.3517

974 6 1 0.2778 1.2118 0.2977

Table 14.7 The calculations for Exercise 14.34.

age(t) #ds #xs #us r Ŝ(t)

0 300

1 6 300 294
300

= 0.98

2 20

3 10 314 0.98 304
314

= 0.94879

4 30 10 304 0.94879 294
304

= 0.91758

5 a 324 0.91758 324− a
324

= 0.892

7 45 =⇒ a = 9

9 b 279− a = 270 0.892 270− b
270

10 35

12 6 244− a− b = 235− b 0.892 270− b
270

229− b
235− b = 0.856

13 15 =⇒ b = 4

14.35 From Exercise 14.32, Ĥ(3) = 0.2774. The variance is estimated as

V̂ar[Ĥ(3)] =
1(29)

303
+

1(29)

303
+

1(29)

303
+

2(27)

293
+

1(27)

283
+

1(27)

283
+

1(26)

273
= 0.0092172.

The linear confidence interval is

0.2774± 1.96
√

0.0092172 or 0.0892 to 0.4656.

The log-transformed interval requires

U = exp

[
±1.96

√
0.0092172

0.2774

]
= 1.97060 and 0.50746.
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The lower limit is 0.2774(0.50746) = 0.14077 and the upper limit is 0.2774(1.97060) =
0.54664.

14.36 First, obtain the estimated survival probability as

Ŝ(4) =
12

15

56

80

20

25

54

60
= 0.4032.

Greenwood’s formula gives

(0.4032)2

(
3

15(12)
+

24

80(56)
+

5

25(20)
+

6

60(54)

)
= 0.00551.

14.37 The standard deviation is(
15(85)

1003
+

20(45)

653
+

13(27)

403

)1/2

= 0.10018.

SECTION 14.6

14.38 In order for the mean to be equal to y, we must have θ/(α − 1) = y. Letting α be
arbitrary (and greater than 1), use a Pareto distribution with θ = y(α− 1). This makes the
kernel function

ky(x) =
α[(α− 1)y]α

[(α− 1)y + x]α+1
.

14.39 The data points and probabilities can be taken from Exercise 14.31. They are given in
Table 14.8.

The probability at 5.0 is discrete and so should not be spread out by the kernel density
estimator. Because of the value at 0.1, the largest available bandwidth is 0.1. Use of this
bandwidth and the triangular kernel produces the graph shown in Figure 14.5.

Table 14.8 The data for Exercise 14.39.

yj p(yj)

0.1 0.0333

0.5 0.0323

0.8 0.0311

1.8 0.0623

2.1 0.0300

2.5 0.0290

2.8 0.0290

3.9 0.0557

4.0 0.0269

4.1 0.0291

4.8 0.0916
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Figure 14.5 The triangular kernel for Exercise 14.39.

This graph is clearly not satisfactory. The gamma kernel is not available because there
would be positive probability at values greater than 5. We tried to solve this by using the
beta distribution. With θ known to be 5, the mean (to be set equal to y) is 5a/(a+ b). To
have some smoothing control and to determine parameter values, the sum a+ b was fixed.
Using a value of 50 for the sum, the kernel is

ky(x) =
Γ(50)

Γ(10y)Γ(50− 10y)

(x
5

)10y (
1− x

5

)50−10y−1 1

x
, 0 < x < 5

and the resulting smoothed estimate is shown in Figure 14.6.

14.40 With a bandwidth of 60, the height of the kernel is 1/120. At a value of 100, the
following data points contribute probability 1/20: 47, 75, and 156. Therefore, the height is
3(1/20)(1/120) = 1/800.
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f(
x
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Figure 14.6 The beta kernel for Exercise 14.39.
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14.41 The uniform kernel spreads the probability of 0.1 to 10 units either side of an
observation. The observation at 25 contributes a density of 0.005 from 15 to 35, thus
contributing nothing to survival past age 40. The same applies to the point at 30. The points
at 35 each contribute probability from 25 to 45 and 0.25 of that probability is above 40.
Together, they contribute 2(0.25)(0.1) = 0.05. The point at 37 contributes (7/20)(0.1) =
0.035. The next four points contribute a total of (9/20+15/20+17/20+19/20)(0.1) = 0.3.
The final point (at 55) contributes all its probability at points above 40 and so contributes
0.1 to the total, which is 0.05 + 0.035 + 0.3 + 0.1 = 0.485.

14.42 (a) With two of the five points below 150, the empirical estimate is 2/5 = 0.4.

(b) The point at 82 has probability 0.2 spread from 32 to 132; the entire range is below 150,
so the contribution is 0.2. The point at 126 has probability from 76 to 176; the contribution
below 150 is (74/100)(0.2) = 0.148. The point at 161 contributes (39/100)(0.2) = 0.078.
The last two points contribute nothing, so the estimate is 0.2 + 0.148 + 0.078 = 0.426.

(c) As in (b), the first point contributes 0.2 and the last two points contribute nothing. The
triangle has base 100 and area 0.2, so the height must be 0.004. For the point at 126,
the probability excluded is the triangle from 150 to 176, which has base 26 and a height
at 150 of 0.004(26/50) = 0.00208. The area is 0.5(26)(0.00208) = 0.02704 and the
contribution is 0.17296. For the point at 161, the area included is the triangle from 111
to 150, which has base 39 and a height at 150 of 0.004(39/50) = 0.00312. The area is
0.5(39)(0.00312) = 0.06084. The estimate is 0.2 + 0.17296 + 0.06084 = 0.4338.

SECTION 14.7

14.43 The only change is that the entries in the dj and wmj columns are swapped. The
exposures then change. For example, at j = 2, the exposure is 28 + 0 + 3(1/2)− 2(1/2) =
28.5.

14.44 The Kaplan–Meier calculations are shown in Table 14.9. Then q̂45 = 1− 0.750 =
0.250 and q̂46 = 1− 0.438/0.750 = 0.416.

For exact exposure at age 45, the first eight individuals contribute 1 + 1 + 0.3 + 1 +
0.4 + 1 + 0.4 + 0.8 = 5.9 of exposure for q̂45 = 1− e−2/5.9 = 0.28751. For age 46, eight
individuals contribute for an exposure of 0.7 + 1 + 1 + 1 + 0.3 + 0.2 + 0.4 + 0.9 = 5.5
for q̂46 = 1− e−3/5.5 = 0.42042.

For actuarial exposure at age 45, the two deaths add 1.3 to the exposure for q̂45 =
2/7.2 = 0.27778. For age 46, the three deaths add 1.7 for q̂46 = 3/7.2 = 0.41667.

Table 14.9 The Kaplan–Meier calculations for Exercise 14.44.

x r s Ŝ(x)

45.3 8 1 7/8 = 0.875

45.4 7 1 0.875(6/7) = 0.750

46.2 8 1 0.750(7/8) = 0.656

46.4 6 1 0.656(5/6) = 0.549

46.7 5 1 0.549(4/5) = 0.438
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Table 14.10 The calculations for Exercise 14.45.

cj Pj nbj wej dj q
′(d)
j Ŝ(cj)

250 0 7 0 1 1/7 1.000

500 6 8 0 2 2/14 1.000(6/7) = 0.857

1,000 12 7 1 4 4/19 0.857(12/14) = 0.735

2,750 14 0 1 1 1/14 0.735(15/19) = 0.580

3,000 12 0 0 0 0/12 0.580(13/14) = 0.539

3,500 12 0 1 6 6/12 0.539(12/12) = 0.539

5,250 5 0 1 0 0/5 0.539(6/12) = 0.269

5,500 4 0 1 1 1/4 0.269(5/5) = 0.269

6,000 2 0 0 1 1/2 0.269(3/4) = 0.202

10,250 1 0 1 0 0/1 0.202(1/2) = 0.101

10,500 0 0 0 0 — 0.101(1/1) = 0.101

14.45 The calculations are shown in Table 14.10. The intervals were selected so that all
deductibles and limits are at the boundaries and so no assumption is needed about the
intermediate values. This setup means that no assumptions need to be made about the timing
of entrants and withdrawals. When working with the observations, the deductible must be
added to the payment in order to produce the loss amount. The requested probability is
Ŝ(5,500)/Ŝ(500) = 0.269/0.857 = 0.314.

14.46 For the intervals, the n-values are 6, 6, 7, 0, 0, 0, and 0, the w-values are 0, 0,
1, 1, 1, 0, and 0, and the d-values are 1, 2, 4, 7, 1, 1, and 0. The P -values are then 6,
6 − 0 − 1 + 6 = 11, 11 − 0 − 2 + 7 = 16, 16 − 1 − 4 + 0 = 11, 11 − 1 − 7 + 0 =
3, 3 − 1 − 1 + 0 = 1, and 1 − 0 − 1 + 0 = 0. The estimates are Ŝ(500) = 5/6
and Ŝ(6,000) = (5/6)(9/11)(12/16)(4/11)(2/3) = 15/121. The answer is the ratio
(15/121)/(5/6) = 18/121 = 0.14876.

SECTION 14.8

14.47 For the Kaplanï£¡Meier estimates, the variances are (by Greenwood’s formula)

V âr(q̂45) = (0.750)2

[
1

8(7)
+

1

7(6)

]
= 0.02344,

V âr(q̂46) = (0.584)2

[
1

8(7)
+

1

6(5)
+

1

5(4)

]
= 0.03451.

For exact exposure, the deaths were 2 and 3 and the exposures 5.9 and 5.5 for the two
ages. The estimated variances are

V âr(q̂45) = (1− 0.28751)2 2

5.92
= 0.02917,

V âr(q̂46) = (1− 0.42042)2 3

5.52
= 0.03331.
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The actuarial exposures are 7.2 for both ages. The estimated variances are

V âr(q̂45) =
0.28751(0.71249)

7.2
= 0.02845,

V âr(q̂46) =
0.42042(0.57958)

7.2
= 0.03384.
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